A260861 Base-11 representation of a(n) is the concatenation of the base-11 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 144, 17689, 2143296, 259371025, 31384248336, 3797497946089, 459497294348544, 55599173087763361, 6727499948806851600, 8954302429379707945271, 131099941868210323821706774, 1919434248892467772593071038679, 28102436838034620750856132266604106
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = (11+1)^2 = 11^2 + 2*11 + 1 = 121_11, concatenation of (1, 2, 1). a(12) = 123456789a101110a987654321_11 is the concatenation of (1, 2, 3, ..., 9, a, 10, 11, 10, a, 9, ..., 1), where "a, 10, 11" are the base-11 representations of 10, 11, 12.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Crossrefs
Programs
-
PARI
a(n,b=11)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Formula
For n < b = 11, we have a(n) = R(b,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.
Comments