A260864 Base-14 representation of a(n) is the concatenation of the base-14 representations of 1, 2, ..., n, n-1, ..., 1.
0, 1, 225, 44521, 8732025, 1711559641, 335466848025, 65751518430361, 12887297839395225, 2525910379700086681, 495078434465717705625, 97035373155903680328601, 19018933138565843484771225, 3727710895159027432980276121, 10228838696316240496325238416281
Offset: 0
Examples
a(0) = 0 is the result of the empty sum corresponding to 0 digits. a(2) = (14+1)^2 = 14^2 + 2*14 + 1 = 121_14, concatenation of (1, 2, 1). a(15) = 123456789abcd101110dcba987654321_14 is the concatenation of (1, 2, 3, ..., 9, a, b, c, d, 10, 11, 10, d, ..., 1), where "d, 10, 11" are the base-14 representations of 13, 14, 15.
Links
- D. Broadhurst, Primes from concatenation: results and heuristics, NmbrThry List, August 1, 2015
Crossrefs
Programs
-
PARI
a(n,b=14)=sum(i=1,#n=concat(vector(n*2-1,k,digits(min(k,n*2-k),b))),n[i]*b^(#n-i))
Formula
For n < b = 14, we have a(n) = R(14,n)^2, where R(b,n) = (b^n-1)/(b-1) are the base-b repunits.
Comments