A260875 Square array read by ascending antidiagonals: number of m-shape complementary Bell numbers.
1, 1, -1, 1, -1, 0, 1, -1, 0, -1, 1, -1, 2, 1, 1, 1, -1, 9, -1, 1, -1, 1, -1, 34, -197, -43, -2, 1, 1, -1, 125, -5281, 6841, 254, -9, -1, 1, -1, 461, -123124, 2185429, -254801, 4157, -9, 2, 1, -1, 1715, -2840293, 465693001, -1854147586, -3000807, -70981, 50, -2
Offset: 1
Examples
[ n ] [ 0 1 2 3 4 5 6] [ m ] -------------------------------------------------------- [ 0 ] [ 1, -1, 0, -1, 1, -1, 1] A081362 [ 1 ] [ 1, -1, 0, 1, 1, -2, -9] A000587 [ 2 ] [ 1, -1, 2, -1, -43, 254, 4157] A260884 [ 3 ] [ 1, -1, 9, -197, 6841, -254801, -3000807] [ 4 ] [ 1, -1, 34, -5281, 2185429, -1854147586, 2755045819549] A010763, For example the number of set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 84, 280 respectively. Thus A(3,3) = -1 + 84 - 280 = -197. Formatted as a triangle: [1] [1, -1] [1, -1, 0] [1, -1, 0, -1] [1, -1, 2, 1, 1] [1, -1, 9, -1, 1, -1] [1, -1, 34, -197, -43, -2, 1] [1, -1, 125, -5281, 6841, 254, -9, -1]
Comments