A260877 Square array read by ascending antidiagonals: number of m-shape Euler numbers.
1, 1, -1, 1, -1, 1, 1, -1, 1, -5, 1, -1, 5, -1, 21, 1, -1, 19, -61, 1, -105, 1, -1, 69, -1513, 1385, -1, 635, 1, -1, 251, -33661, 315523, -50521, 1, -4507, 1, -1, 923, -750751, 60376809, -136085041, 2702765, -1, 36457, 1, -1, 3431, -17116009, 11593285251
Offset: 1
Examples
[ n ] [0 1 2 3 4 5 6] [ m ] -------------------------------------------------------------- [ 0 ] [1, -1, 1, -5, 21, -105, 635] A260845 [ 1 ] [1, -1, 1, -1, 1, -1, 1] A033999 [ 2 ] [1, -1, 5, -61, 1385, -50521, 2702765] A028296 [ 3 ] [1, -1, 19, -1513, 315523, -136085041, 105261234643] A002115 [ 4 ] [1, -1, 69, -33661, 60376809, -288294050521, 3019098162602349] A211212 A030662,A211213, A181991, For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 168, 1680 respectively. Thus A(3,3) = -1 + 168 - 1680 = -1513. Formatted as a triangle: [1] [1, -1] [1, -1, 1] [1, -1, 1, -5] [1, -1, 5, -1, 21] [1, -1, 19, -61, 1, -105] [1, -1, 69, -1513, 1385, -1, 635]
Comments