A260882 Least prime p such that 2*prime(p*n)+1 = prime(q*n) for some prime q.
3, 47, 3, 13, 797, 89, 2269, 733, 7877, 53, 14683, 16267, 17167, 59951, 10067, 761, 94463, 12437, 124561, 71881, 52009, 6791, 10061, 47287, 10789, 19009, 4813, 23173, 27427, 18701, 23011, 44917, 17, 70937, 883, 727, 99079, 10531, 18749, 126541, 18121, 34807, 29873, 159473, 853, 165317, 80627, 159721, 8263, 411707
Offset: 1
Keywords
Examples
a(2) = 47 since 2*prime(47*2)+1 = 2*491+1 = 983 = prime(83*2) with 47 and 83 both prime. a(199) = 2784167 since 2*prime(2784167*199)+1 = 2*12290086499+1 = 24580172999 = prime(5399231*199) with 2784167 and 5399231 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
Programs
-
Mathematica
f[n_]:=Prime[n] PQ[p_,n_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n] Do[k=0;Label[bb];k=k+1;If[PQ[2*f[n*f[k]]+1,n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", f[k]];Continue,{n,1,50}]
Comments