This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260885 #28 Jan 25 2025 13:08:47 %S A260885 1,2,1,6,6,2,21,62,37,0,97,559,788,112,0,579,5614,14558,7223,0,0,3812, %T A260885 56526,246331,277407,34748,0,0,27328,580860,3900740,8179658,3534594,0, %U A260885 0,0,206410,6020736,58842028,203974134,198559566,22524176,0,0,0 %N A260885 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is oriented, the surface is unoriented). %C A260885 When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc. %C A260885 Row g=0 is A008988 starting with n = 1. %C A260885 For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - _Robert Coquereaux_, Nov 23 2015 %H A260885 Robert Coquereaux and J.-B. Zuber, <a href="http://arxiv.org/abs/1507.03163">Maps, immersions and permutations</a>, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474 %e A260885 The transposed triangle starts: %e A260885 1 2 6 21 97 579 3812 27328 206410 %e A260885 1 6 62 559 5614 56526 580860 6020736 %e A260885 2 37 788 14558 246331 3900740 58842028 %e A260885 0 112 7223 277407 8179658 203974134 %e A260885 0 0 34748 3534594 198559566 %e A260885 0 0 0 22524176 %e A260885 0 0 0 %e A260885 0 0 %e A260885 0 %o A260885 (Magma) /* Example n := 6 */ %o A260885 n:=6; %o A260885 n; // n: number of crossings %o A260885 G:=Sym(2*n); %o A260885 doubleG := Sym(4*n); %o A260885 genH:={}; %o A260885 for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; %o A260885 H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) %o A260885 cardH:=#H; %o A260885 cardH; %o A260885 rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; %o A260885 cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) %o A260885 Hcycrho:=sub<G|[H,cycrho]>; // The subgroup generated by H and cycrho %o A260885 cardZp:= Factorial(2*n-1); %o A260885 beta:=G!Append([2..2*n],1); // A typical circular permutation %o A260885 Cbeta:=Centralizer(G,beta); %o A260885 bool, rever := IsConjugate(G,beta,beta^(-1)); %o A260885 cycbeta := PermutationGroup< 2*n |{rever}>; %o A260885 Cbetarev := sub<G|[Cbeta,cycbeta]>; %o A260885 psifct := function(per); %o A260885 perinv:=per^(-1); %o A260885 res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; %o A260885 resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; %o A260885 res cat:= resbis; %o A260885 return doubleG!res; %o A260885 end function; %o A260885 numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; %o A260885 supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; %o A260885 // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus %o A260885 // Case OU %o A260885 dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbeta); #dblsize; %o A260885 genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; %o A260885 quit; %o A260885 // _Robert Coquereaux_, Nov 23 2015 %Y A260885 Cf. A008988. The sum over all genera g for a fixed number n of crossings is given by sequence A260887. Cf. A260885, A260848, A260914. %K A260885 nonn,tabl,hard %O A260885 1,2 %A A260885 _Robert Coquereaux_, Aug 02 2015