A260888 Least prime p such that 2 + 3*pi(p*n) = 4*pi(q*n) for some prime q, where pi(x) denotes the number of primes not exceeding x.
3, 2, 41, 211, 23, 83, 43, 23, 7, 3, 601, 109, 23, 251, 31, 251, 7, 41, 149, 157, 293, 3, 103, 41, 2083, 233, 7, 647, 1877, 7, 1117, 599, 7, 937, 487, 7, 251, 149, 7, 439, 83, 3, 7, 43, 643, 7, 157, 157, 1291, 7
Offset: 1
Keywords
Examples
a(5) = 23 since 2+3*pi(23*5) = 2+3*30 = 92 = 4*23 = 4*pi(17*5) with 23 and 17 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..600
- Zhi-Wei Sun, Checking the conjecture for a,b,c = 1..20 and n = 1..30
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
Programs
-
Mathematica
f[k_,n_]:=PrimePi[Prime[k]*n] Do[k=0;Label[bb];k=k+1;If[Mod[3*f[k,n]+2,4]>0,Goto[bb]];Do[If[(3*f[k,n]+2)/4==f[j,n],Goto[aa]];If[(3*f[k,n]+2)/4
Comments