This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260910 #9 Feb 16 2025 08:33:26 %S A260910 -1,1,3,5,7,11,11,17,23,29,19,23,27,31,39,29,49,59,79,89,109,41,47,53, %T A260910 59,65,71,83,55,69,83,97,111,125,139,153,71,79,95,103,119,127,143,151, %U A260910 167,89,107,143,161,179,197,233,251,269,287,109,119,129,139 %N A260910 Triangle read by rows: Fresenius numbers of n and A077664(n,k), k = 1..n. %C A260910 For n > 1: T(n,1) = A028387(n-2). %H A260910 Reinhard Zumkeller, <a href="/A260910/b260910.txt">Rows n = 1..125 of triangle, flattened</a> %H A260910 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FrobeniusNumber.html">Frobenius Number</a>. %H A260910 Wikipedia, <a href="http://en.wikipedia.org/wiki/Coin_problem">Coin problem</a> %F A260910 T(n,k) = (n-1) * A077664(n,k) - n. %e A260910 . 1: -1 %e A260910 . 2: 1 3 %e A260910 . 3: 5 7 11 %e A260910 . 4: 11 17 23 29 %e A260910 . 5: 19 23 27 31 39 %e A260910 . 6: 29 49 59 79 89 109 %e A260910 . 7: 41 47 53 59 65 71 83 %e A260910 . 8: 55 69 83 97 111 125 139 153 %e A260910 . 9: 71 79 95 103 119 127 143 151 167 %e A260910 . 10: 89 107 143 161 179 197 233 251 269 287 %e A260910 . 11: 109 119 129 139 149 159 169 179 189 199 219 %e A260910 . 12: 131 175 197 241 263 307 329 373 395 439 461 505 . %t A260910 row[n_] := Module[{j, k}, Reap[For[j = n+1; k = 1, k <= n, j++, If[CoprimeQ[n, j], Sow[j]; k++]]][[2, 1]]]; %t A260910 T[n_, k_] := (n-1) row[n][[k]] - n; %t A260910 Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 21 2021 *) %o A260910 (Haskell) %o A260910 a260910 n k = a260910_tabl !! (n - 1) !! (k-1) %o A260910 a260910_row n = a260910_tabl !! (n-1) %o A260910 a260910_tabl = zipWith (map . sylvester) [1..] a077664_tabl where %o A260910 sylvester u v = u * v - u - v %Y A260910 Cf. A077664, A028387. %K A260910 sign,tabl %O A260910 1,3 %A A260910 _Reinhard Zumkeller_, Aug 04 2015