cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260918 Number of squares of all sizes in polyominoes obtained by union of two pyramidal figures (A092498) with intersection equals A002623.

This page as a plain text file.
%I A260918 #37 Mar 04 2025 02:46:53
%S A260918 0,1,5,15,33,60,100,154,224,313,423,555,713,898,1112,1358,1638,1953,
%T A260918 2307,2701,3137,3618,4146,4722,5350,6031,6767,7561,8415,9330,10310,
%U A260918 11356,12470,13655,14913,16245,17655,19144,20714,22368,24108,25935,27853,29863
%N A260918 Number of squares of all sizes in polyominoes obtained by union of two pyramidal figures (A092498) with intersection equals A002623.
%C A260918 The resulting polyforms are n*(3*n-1)/2-polyominoes.
%C A260918 Also they are 6*n-gons with n>1.
%C A260918 Schäfli's notation for figure corresponding to a(1): 4.
%H A260918 Colin Barker, <a href="/A260918/b260918.txt">Table of n, a(n) for n = 0..1000</a>
%H A260918 Luce ETIENNE, <a href="/A260918/a260918.pdf">Illustration of initial terms</a>
%H A260918 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,-1,0,2,-1).
%F A260918 a(n) = A258440(n) - A000212(n+1).
%F A260918 a(n) = (1/8)*((Sum_{i=0..floor(2*n/3)} (4*n+1-6*i-(-1)^i)*(4*n-1-6*i+(-1)^i)) - (Sum_{j=0..(2*n-1+(-1)^n)/4} (2*n+1-(-1)^n-4*j)*(2*n+1+(-1)^n-4*j))).
%F A260918 a(n) = (52*n^3+90*n^2+20*n-3*(32*floor((n+1)/3)+3*(1-(-1)^n)))/144.
%F A260918 G.f.: x*(4*x^3+5*x^2+3*x+1) / ((x-1)^4*(x+1)*(x^2+x+1)). - _Colin Barker_, Aug 08 2015
%F A260918 E.g.f.: (3*exp(x)*x*(65 + x*(123 + 26*x)) + 32*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2) - 27*sinh(x))/216. - _Stefano Spezia_, Nov 15 2024
%e A260918 a(1)=1, a(2)=5, a(3)=12+3=15, a(4)=22+9+2=33, a(5)=35+18+7=60, a(6)=51+30+15+4=100.
%t A260918 Table[(52 n^3 + 90 n^2 + 20 n - 3 (32 Floor[(n + 1) / 3] + 3 (1 - (-1)^n))) / 144, {n, 0, 45}] (* _Vincenzo Librandi_, Aug 12 2015 *)
%o A260918 (PARI) concat(0, Vec(x*(4*x^3+5*x^2+3*x+1)/((x-1)^4*(x+1)*(x^2+x+1)) + O(x^100))) \\ _Colin Barker_, Aug 08 2015
%o A260918 (Magma) [(52*n^3+90*n^2+20*n-3*(32*Floor((n+1)/3)+3*(1-(-1)^n)))/144: n in [0..50]]; // _Vincenzo Librandi_, Aug 12 2015
%Y A260918 Cf. A002623, A092498, A173196, A000212, A258440.
%K A260918 nonn,easy
%O A260918 0,3
%A A260918 _Luce ETIENNE_, Aug 04 2015
%E A260918 Two repeated terms deleted by _Colin Barker_, Aug 08 2015