This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260933 #12 Jul 07 2021 16:26:01 %S A260933 7,6,5,4,3,2,1,12,11,10,9,8,13,18,17,16,15,14,19,24,23,22,21,20,25,28, %T A260933 27,26,33,32,31,30,29,34,39,38,37,36,35,40,43,42,41,46,45,44,47,50,49, %U A260933 48,53,52,51,56,55,54,57,58,59,60,61,62,65,64,63,66,67 %N A260933 Lexicographically smallest permutation of the natural numbers, such that a(n)+n and a(n)+n+1 are both composite numbers. %C A260933 The permutation is self-inverse: a(a(n)) = n. %H A260933 Reinhard Zumkeller, <a href="/A260933/b260933.txt">Table of n, a(n) for n = 1..10000</a> %H A260933 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %t A260933 a[n_]:=a[n]=(k=1;While[PrimeQ[k+n]||PrimeQ[k+n+1]||MemberQ[Array[a,n-1],k],k++];k);Array[a,100] (* _Giorgos Kalogeropoulos_, Jul 06 2021 *) %o A260933 (Haskell) %o A260933 import Data.List (delete) %o A260933 a260933 n = a260933_list !! (n-1) %o A260933 a260933_list = f 1 [1..] where %o A260933 f x zs = g zs where %o A260933 g (y:ys) = if a010051' (x + y) == 0 && a010051' (x + y + 1) == 0 %o A260933 then y : f (x + 1) (delete y zs) else g ys %o A260933 (Python) %o A260933 from sympy import isprime %o A260933 def composite(n): return n > 1 and not isprime(n) %o A260933 def aupton(terms): %o A260933 alst, aset = [], set() %o A260933 for n in range(1, terms+1): %o A260933 an = 1 %o A260933 while True: %o A260933 while an in aset: an += 1 %o A260933 if composite(an+n) and composite(an+n+1): break %o A260933 an += 1 %o A260933 alst, aset = alst + [an], aset | {an} %o A260933 return alst %o A260933 print(aupton(67)) # _Michael S. Branicky_, Jul 06 2021 %Y A260933 Cf. A010051, A002808, A136798, A260936 (fixed points), A260822. %K A260933 nonn %O A260933 1,1 %A A260933 _Reinhard Zumkeller_, Aug 04 2015