This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260940 #22 Nov 04 2015 11:01:39 %S A260940 3,5,7,7,11,13,13,17,19,19,23,19,21,29,31,31,31,37,37,41,43,43,47,43, %T A260940 43,53,43,41,59,61,61,61,67,67,71,73,73,71,79,79,83,79,79,89,79,79,79, %U A260940 97,97,101,103,103,107,109,109,113,109,109,113,109 %N A260940 a(n) is the smallest index j>n such that g(j)=0 for the sequence g defined (for indices > n) by g(n+1)=n and g(i) = g(i-1) - gcd(i,g(i-1)). %C A260940 a(n) is prime for all n<=10^10 except a(13)=21. %C A260940 a(n) <= 2n + 1. %C A260940 a(n) = 2n + 1 if and only if 2n + 1 is prime. %C A260940 a(n) = 2n - 1 if and only if 2n - 1 is a prime and 2n - 1 = 1 mod 6. %C A260940 a(n) = 2n - 3 if and only if 2n - 3 is a prime and 2n - 3 = 1 mod 30. %H A260940 Moritz Firsching, <a href="/A260940/b260940.txt">Table of n, a(n) for n = 1..9999</a> %o A260940 (Sage) %o A260940 def a(n): %o A260940 g=n %o A260940 n+=1 %o A260940 while(g!=0): %o A260940 g=g-gcd(n,g) %o A260940 n+=1 %o A260940 return n %o A260940 (PARI) %o A260940 a(last_a) = { %o A260940 local(A=last_a,B=last_a,C=2*last_a+1); %o A260940 while(A>0, %o A260940 D=divisors(C); %o A260940 k1=10*D[2]; %o A260940 for(j=2,matsize(D)[2],d=D[j];k=((A+1-B+d)/2)%d; %o A260940 if(k==0,k=d); if(k<=k1,k1=k;d1=d)); %o A260940 if(k1-1+d1==A,B=B+1); %o A260940 A = max(A-(k1-1)-d1,0); %o A260940 B = B + k1; %o A260940 C = C - (d1 - 1); %o A260940 ); %o A260940 return(B); %o A260940 } %o A260940 a(n)={ %o A260940 my(A=n, B=n, C=2*n+1); %o A260940 while(A>0, %o A260940 my(k1=oo,d1); %o A260940 fordiv(C,d, %o A260940 if(d==1,next); %o A260940 my(k=((A+1-B+d)/2)%d); %o A260940 if(k==0, k=d); %o A260940 if(k<=k1, k1=k; d1=d) %o A260940 ); %o A260940 A -= k1 - 1 + d1; %o A260940 B += k1 + (A==0); %o A260940 C -= d1 - 1; %o A260940 ); %o A260940 B; %o A260940 } \\ _Charles R Greathouse IV_, Nov 04 2015 %Y A260940 Cf. A002476, A132230, A261301. %Y A260940 A186253(n) is a^n(2) where a^n denotes the n-th composition. %K A260940 nonn %O A260940 1,1 %A A260940 _Moritz Firsching_, Aug 04 2015