cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260952 Coefficients in asymptotic expansion of the sequences A109253 and A112225.

This page as a plain text file.
%I A260952 #9 Mar 07 2022 06:14:26
%S A260952 1,-1,-1,-5,-35,-319,-3557,-46617,-699547,-11801263,-220778973,
%T A260952 -4532376577,-101246459811,-2444155497191,-63397685488165,
%U A260952 -1758278168174137,-51920205021872395,-1626358286062507551,-53865503179448478605,-1880864793407486366353
%N A260952 Coefficients in asymptotic expansion of the sequences A109253 and A112225.
%C A260952 The values 1,5,35,319,... also are the number of Feynman diagrams of the Green's function of 2,4,6,8,... vertices which have no tadpoles (i.e. no edges that connect a vertex to itself), a subset of the graphs in A000698, vixra:1901.0148. This is likely a random coincidence. - _R. J. Mathar_, Mar 07 2022
%H A260952 Vaclav Kotesovec, <a href="/A260952/b260952.txt">Table of n, a(n) for n = 0..124</a>
%F A260952 A109253(n)/(n!*2^n) ~ Sum_{k>=0} a(k)/(2*n)^k.
%F A260952 A112225(n)/(n!*2^(n-1)) ~ Sum_{k>=0} a(k)/(2*n)^k.
%F A260952 Conjecture: a(k) ~ -k! * 2^(k+1) / (9 * (log(3))^(k+1)).
%e A260952 A109253(n)/(n!*2^n) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
%e A260952 A112225(n)/(n!*2^(n-1)) ~ (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - ...
%Y A260952 Cf. A109253, A112225.
%K A260952 sign
%O A260952 0,4
%A A260952 _Vaclav Kotesovec_, Aug 05 2015