A260959 Numbers n such that n is the average of four consecutive primes n-13, n-1, n+1 and n+13.
7950, 10500, 32970, 33330, 34470, 36900, 43050, 66360, 71550, 74610, 87120, 89070, 92400, 94560, 95190, 102000, 104310, 121950, 125790, 133980, 148470, 156900, 160710, 168630, 174930, 182640, 194070, 204600, 206250, 230340, 244380, 246510
Offset: 1
Keywords
Examples
7950 is the average of the four consecutive primes 7937, 7949, 7951, 7963. 10500 is the average of the four consecutive primes 10487, 10499, 10501, 10513.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Perl
use ntheory ":all"; say join ", ", map { $+1 } grep { next_prime($+2)-$==14 } grep { $-prev_prime($)==12 } @{twin_primes(1e6)}; # _Dana Jacobsen, Oct 03 2015
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,300001,2): if isprime(i-1) and isprime(i+1): if prevprime(i-1) == i-13 and nextprime(i+1) == i+13 : print (i,end=', ')
Comments