A260963 Numbers n such that gcd(sigma(n), n*(n+1)/2 - sigma(n)) = 1, where sigma(n) is sum of positive divisors of n.
1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 46, 49, 57, 58, 64, 70, 81, 82, 85, 93, 94, 100, 106, 118, 121, 129, 130, 133, 142, 144, 154, 166, 169, 178, 201, 202, 205, 214, 217, 225, 226, 237, 238, 250, 253, 256, 262, 265, 274, 289, 298, 301, 309, 310, 322, 324, 325
Offset: 1
Examples
sigma(10) = 18, 10*11/2 - sigma(10) = 55 - 18 = 37 and gcd(18,37) = 1 because 18 = 2*9 and 37 is prime.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:=proc(q) local n; for n from 1 to q do if gcd(sigma(n),n*(n+1)/2-sigma(n))=1 then print(n); fi; od; end: P(10^9);
-
Mathematica
Select[Range@ 360, GCD[DivisorSigma[1, #], # (# + 1)/2 - DivisorSigma[1, #]] == 1 &] (* Michael De Vlieger, Aug 27 2015 *)