This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260985 #31 Sep 25 2024 10:28:08 %S A260985 16,48,64,72,80,81,108,112,162,176,192,200,208,240,256,272,288,304, %T A260985 320,336,360,368,392,405,432,448,464,496,500,504,528,540,560,567,592, %U A260985 600,624,625,648,656,675,688,704,729,752,756,768,792,800,810,816,832,848 %N A260985 Numbers k such that A001222(k) - A001221(k) is an odd prime. %C A260985 The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0626525..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - _Amiram Eldar_, Sep 24 2024 %H A260985 G. C. Greubel, <a href="/A260985/b260985.txt">Table of n, a(n) for n = 1..3000</a> %H A260985 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %e A260985 16 is in the sequence because A001222(16) - A001221(16) = 3. %e A260985 80 is in the sequence because A001222(80) - A001221(80) = 3. %e A260985 192 is in the sequence because A001222(192) - A001221(192) = 5. %t A260985 Select[Range[10^3], !PrimeQ[#] && PrimeQ[p = PrimeOmega[#] - PrimeNu[#]] && OddQ[p] &] %o A260985 (PARI) isok(n) = (d=bigomega(n)-omega(n)) && (d != 2) && isprime(d); \\ _Michel Marcus_, Aug 07 2015 %o A260985 (Python) %o A260985 from sympy import isprime, primefactors %o A260985 def omega(n): return 0 if n==1 else len(primefactors(n)) %o A260985 def bigomega(n): return 0 if n==1 else bigomega(n//min(primefactors(n))) + 1 %o A260985 def ok(n): %o A260985 d = bigomega(n) - omega(n) %o A260985 return d%2 and isprime(d) %o A260985 print([n for n in range(1, 1001) if ok(n)]) # _Indranil Ghosh_, Apr 25 2017 %Y A260985 Cf. A001221, A001222, A046660, A059956, A112526. %Y A260985 Subsequence of A013929. %Y A260985 Subsequences: A195087, A195089, A195091. %K A260985 nonn,easy %O A260985 1,1 %A A260985 _Carlos Eduardo Olivieri_, Aug 06 2015