cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260987 Record values in A008480.

This page as a plain text file.
%I A260987 #22 Aug 20 2019 09:25:25
%S A260987 1,2,3,4,6,12,20,30,60,105,120,140,180,210,280,420,504,840,1120,1512,
%T A260987 1680,2520,3780,5040,6300,7560,9240,12600,13860,15120,15840,27720,
%U A260987 34650,37800,55440,83160,102960,110880,138600,180180,205920,216216,240240,332640
%N A260987 Record values in A008480.
%H A260987 Amiram Eldar, <a href="/A260987/b260987.txt">Table of n, a(n) for n = 1..2011</a> (terms 1..80 from Reinhard Zumkeller)
%F A260987 a(n) = A008480(A260633(n)).
%e A260987 .   n | x = A260633(n)        | y = a(n)             | [x/y] | x mod y
%e A260987 . ----+-----------------------+----------------------+-------+---------
%e A260987 .   1 |     1 | 1             |    1 | 1             |    1  |      0
%e A260987 .   2 |     6 | 2*3           |    2 | 2             |    3  |      0
%e A260987 .   3 |    12 | 2^2*3         |    3 | 3             |    4  |      0
%e A260987 .   4 |    24 | 2^3*3         |    4 | 2^2           |    6  |      0
%e A260987 .   5 |    30 | 2*3*5         |    6 | 2*3           |    5  |      0
%e A260987 .   6 |    60 | 2^2*3*5       |   12 | 2^2*3         |    5  |      0
%e A260987 .   7 |   120 | 2^3*3*5       |   20 | 2^2*5         |    6  |      0
%e A260987 .   8 |   180 | 2^2*3^2*5     |   30 | 2*3*5         |    6  |      0
%e A260987 .   9 |   360 | 2^3*3^2*5     |   60 | 2^2*3*5       |    6  |      0
%e A260987 .  10 |   720 | 2^4*3^2*5     |  105 | 3*5*7         |    6  |     90
%e A260987 .  11 |   840 | 2^3*3*5*7     |  120 | 2^3*3*5       |    7  |      0
%e A260987 .  12 |  1080 | 2^3*3^3*5     |  140 | 2^2*5*7       |    7  |    100
%e A260987 .  13 |  1260 | 2^2*3^2*5*7   |  180 | 2^2*3^2*5     |    7  |      0
%e A260987 .  14 |  1680 | 2^4*3*5*7     |  210 | 2*3*5*7       |    8  |      0
%e A260987 .  15 |  2160 | 2^4*3^3*5     |  280 | 2^3*5*7       |    7  |    200
%e A260987 .  16 |  2520 | 2^3*3^2*5*7   |  420 | 2^2*3*5*7     |    6  |      0
%e A260987 .  17 |  4320 | 2^5*3^3*5     |  504 | 2^3*3^2*7     |    8  |    288
%e A260987 .  18 |  5040 | 2^4*3^2*5*7   |  840 | 2^3*3*5*7     |    6  |      0
%e A260987 .  19 |  7560 | 2^3*3^3*5*7   | 1120 | 2^5*5*7       |    6  |    840
%e A260987 .  20 | 10080 | 2^5*3^2*5*7   | 1512 | 2^3*3^3*7     |    6  |   1008
%e A260987 .  21 | 12600 | 2^3*3^2*5^2*7 | 1680 | 2^4*3*5*7     |    7  |    840
%e A260987 .  22 | 15120 | 2^4*3^3*5*7   | 2520 | 2^3*3^2*5*7   |    6  |      0
%e A260987 .  23 | 25200 | 2^4*3^2*5^2*7 | 3780 | 2^2*3^3*5*7   |    6  |   2520
%e A260987 .  24 | 30240 | 2^5*3^3*5*7   | 5040 | 2^4*3^2*5*7   |    6  |      0
%e A260987 .  25 | 45360 | 2^4*3^4*5*7   | 6300 | 2^2*3^2*5^2*7 |    7  |   1260 .
%o A260987 (Haskell)
%o A260987 a260987 n = a260987_list !! (n-1)
%o A260987 (a260987_list, a260633_list) = unzip $ f 1 0 where
%o A260987    f x r = if y > r then (y, x) : f (x + 1) y else f (x + 1) r
%o A260987            where y = a008480 x
%Y A260987 Cf. A008480, A260633.
%K A260987 nonn
%O A260987 1,2
%A A260987 _Reinhard Zumkeller_, Nov 18 2015