This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260987 #22 Aug 20 2019 09:25:25 %S A260987 1,2,3,4,6,12,20,30,60,105,120,140,180,210,280,420,504,840,1120,1512, %T A260987 1680,2520,3780,5040,6300,7560,9240,12600,13860,15120,15840,27720, %U A260987 34650,37800,55440,83160,102960,110880,138600,180180,205920,216216,240240,332640 %N A260987 Record values in A008480. %H A260987 Amiram Eldar, <a href="/A260987/b260987.txt">Table of n, a(n) for n = 1..2011</a> (terms 1..80 from Reinhard Zumkeller) %F A260987 a(n) = A008480(A260633(n)). %e A260987 . n | x = A260633(n) | y = a(n) | [x/y] | x mod y %e A260987 . ----+-----------------------+----------------------+-------+--------- %e A260987 . 1 | 1 | 1 | 1 | 1 | 1 | 0 %e A260987 . 2 | 6 | 2*3 | 2 | 2 | 3 | 0 %e A260987 . 3 | 12 | 2^2*3 | 3 | 3 | 4 | 0 %e A260987 . 4 | 24 | 2^3*3 | 4 | 2^2 | 6 | 0 %e A260987 . 5 | 30 | 2*3*5 | 6 | 2*3 | 5 | 0 %e A260987 . 6 | 60 | 2^2*3*5 | 12 | 2^2*3 | 5 | 0 %e A260987 . 7 | 120 | 2^3*3*5 | 20 | 2^2*5 | 6 | 0 %e A260987 . 8 | 180 | 2^2*3^2*5 | 30 | 2*3*5 | 6 | 0 %e A260987 . 9 | 360 | 2^3*3^2*5 | 60 | 2^2*3*5 | 6 | 0 %e A260987 . 10 | 720 | 2^4*3^2*5 | 105 | 3*5*7 | 6 | 90 %e A260987 . 11 | 840 | 2^3*3*5*7 | 120 | 2^3*3*5 | 7 | 0 %e A260987 . 12 | 1080 | 2^3*3^3*5 | 140 | 2^2*5*7 | 7 | 100 %e A260987 . 13 | 1260 | 2^2*3^2*5*7 | 180 | 2^2*3^2*5 | 7 | 0 %e A260987 . 14 | 1680 | 2^4*3*5*7 | 210 | 2*3*5*7 | 8 | 0 %e A260987 . 15 | 2160 | 2^4*3^3*5 | 280 | 2^3*5*7 | 7 | 200 %e A260987 . 16 | 2520 | 2^3*3^2*5*7 | 420 | 2^2*3*5*7 | 6 | 0 %e A260987 . 17 | 4320 | 2^5*3^3*5 | 504 | 2^3*3^2*7 | 8 | 288 %e A260987 . 18 | 5040 | 2^4*3^2*5*7 | 840 | 2^3*3*5*7 | 6 | 0 %e A260987 . 19 | 7560 | 2^3*3^3*5*7 | 1120 | 2^5*5*7 | 6 | 840 %e A260987 . 20 | 10080 | 2^5*3^2*5*7 | 1512 | 2^3*3^3*7 | 6 | 1008 %e A260987 . 21 | 12600 | 2^3*3^2*5^2*7 | 1680 | 2^4*3*5*7 | 7 | 840 %e A260987 . 22 | 15120 | 2^4*3^3*5*7 | 2520 | 2^3*3^2*5*7 | 6 | 0 %e A260987 . 23 | 25200 | 2^4*3^2*5^2*7 | 3780 | 2^2*3^3*5*7 | 6 | 2520 %e A260987 . 24 | 30240 | 2^5*3^3*5*7 | 5040 | 2^4*3^2*5*7 | 6 | 0 %e A260987 . 25 | 45360 | 2^4*3^4*5*7 | 6300 | 2^2*3^2*5^2*7 | 7 | 1260 . %o A260987 (Haskell) %o A260987 a260987 n = a260987_list !! (n-1) %o A260987 (a260987_list, a260633_list) = unzip $ f 1 0 where %o A260987 f x r = if y > r then (y, x) : f (x + 1) y else f (x + 1) r %o A260987 where y = a008480 x %Y A260987 Cf. A008480, A260633. %K A260987 nonn %O A260987 1,2 %A A260987 _Reinhard Zumkeller_, Nov 18 2015