This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261005 #24 Mar 01 2024 01:59:55 %S A261005 1,1,2,5,20,180,16143,489996795,1392195548399980210, %T A261005 789204635842035039135545297410259322 %N A261005 Number of unlabeled simplicial complexes with n nodes. %C A261005 Also the number of non-isomorphic antichains of nonempty sets covering n vertices. The labeled case is A006126, except with a(0) = 1. - _Gus Wiseman_, Feb 23 2019 %D A261005 Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015. %H A261005 C. Lienkaemper, A. Shiu, and Z. Woodstock, <a href="http://www.math.tamu.edu/~annejls/papers/obstructions-convexity-neural.pdf">Obstructions to convexity in neural codes</a>, Preprint 2015. %H A261005 Francisco Ponce Carrión and Seth Sullivant, <a href="https://arxiv.org/abs/2402.16292">Marginal Independence and Partial Set Partitions</a>, arXiv:2402.16292 [math.ST], 2024. See p. 21. %H A261005 Gus Wiseman, <a href="/A048143/a048143_4.txt">Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons</a>. %F A261005 First differences of A306505. - _Gus Wiseman_, Feb 23 2019 %F A261005 a(n) = A003182(n) - A003182(n-1) for n > 0. - _Andrew Howroyd_, May 28 2023 %e A261005 From _Gus Wiseman_, Feb 23 2019: (Start) %e A261005 Non-isomorphic representatives of the a(0) = 1 through a(4) = 20 antichains: %e A261005 {} {{1}} {{12}} {{123}} {{1234}} %e A261005 {{1}{2}} {{1}{23}} {{1}{234}} %e A261005 {{13}{23}} {{12}{34}} %e A261005 {{1}{2}{3}} {{14}{234}} %e A261005 {{12}{13}{23}} {{1}{2}{34}} %e A261005 {{134}{234}} %e A261005 {{1}{24}{34}} %e A261005 {{1}{2}{3}{4}} %e A261005 {{13}{24}{34}} %e A261005 {{14}{24}{34}} %e A261005 {{13}{14}{234}} %e A261005 {{12}{134}{234}} %e A261005 {{1}{23}{24}{34}} %e A261005 {{124}{134}{234}} %e A261005 {{12}{13}{24}{34}} %e A261005 {{14}{23}{24}{34}} %e A261005 {{12}{13}{14}{234}} %e A261005 {{123}{124}{134}{234}} %e A261005 {{13}{14}{23}{24}{34}} %e A261005 {{12}{13}{14}{23}{24}{34}} %e A261005 (End) %Y A261005 Apart from a(0), same as A006602, and after subtracting 1, A007411. %Y A261005 Cf. A000372, A003182, A006126, A014466, A261006, A304997, A304998, A306505, A306550, A321679. %K A261005 nonn %O A261005 0,3 %A A261005 _N. J. A. Sloane_, Aug 13 2015 %E A261005 a(8)-a(9) added using A003182 by _Andrew Howroyd_, May 28 2023