This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261013 #16 Dec 06 2016 10:58:04 %S A261013 0,1,0,1,1,0,0,1,1,1,1,0,0,1,1,1,1,1,1,0,0,2,1,1,1,1,2,1,0,2,2,1,1,1, %T A261013 2,2,2,0,0,2,3,2,1,1,1,2,3,3,1,0,0,3,4,3,1,1,1,2,4,4,2,1,0,3,5,5,2,1, %U A261013 1,1,3,5,5,3,2,0,0,3,6,7,3,2,1,1,1,3,7,7,4,3,1,0 %N A261013 Irregular triangle read by rows: T(n,k) = number of partitions of n into prime parts in which the largest part is the k-th prime. %H A261013 Alois P. Heinz, <a href="/A261013/b261013.txt">Rows n = 1..500, flattened</a> %H A261013 O. P. Gupta and S. Luthra, <a href="http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005ad0_181.pdf">Partitions into primes</a>, Proc. Nat. Inst. Sci. India. Part A. 21 (1955), 181-184. %e A261013 Triangle begins: %e A261013 0, %e A261013 1, %e A261013 0,1, %e A261013 1,0, %e A261013 0,1,1, %e A261013 1,1,0, %e A261013 0,1,1,1, %e A261013 1,1,1,0, %e A261013 0,2,1,1, %e A261013 1,1,2,1, %e A261013 ... %p A261013 with(numtheory): %p A261013 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A261013 b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(ithprime(i)))) %p A261013 end: %p A261013 T:= n-> `if`(n=1, 0, seq(b(n-ithprime(k), k), k=1..pi(n))): %p A261013 seq(T(n), n=1..25); # _Alois P. Heinz_, Aug 16 2015 %t A261013 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i-1] + Function[p, If[p>n, 0, b[n-p, i]]][Prime[i]]]]; T[n_] := If[n == 1, 0, Table[b[n - Prime[k], k], {k, 1, PrimePi[n]}]]; Table[T[n], {n, 1, 25}] // Flatten (* _Jean-François Alcover_, Dec 06 2016 after _Alois P. Heinz_ *) %Y A261013 Row sums are A000607. %K A261013 nonn,tabf,look %O A261013 1,22 %A A261013 _N. J. A. Sloane_, Aug 16 2015 %E A261013 More terms from _Alois P. Heinz_, Aug 16 2015