This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261015 #27 Feb 21 2024 08:19:45 %S A261015 1,1,1,1,1,1,1,1,2,3,1,0,0,0,1,1,3,6,4,1,0,0,0,0,0,0,0,0,0,0,1,1,4,11, %T A261015 10,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,5,19,21, %U A261015 15,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A261015 Irregular triangle read by rows: T(n,k) (0 <= k <= 2^n-1) = number of binary strings of length n such that the smallest number whose binary representation is not visible in the string is k. %C A261015 Suggested by A260273. %H A261015 Alois P. Heinz, <a href="/A261015/b261015.txt">Rows n = 1..15, flattened</a> %e A261015 Triangle begins: %e A261015 1,1, %e A261015 1,1,1,1, %e A261015 1,1,2,3,1,0,0,0, %e A261015 1,1,3,6,4,1,0,0,0,0,0,0,0,0,0,0, %e A261015 ... %e A261015 For row 3, here are the 8 strings of length 3 and for each one, the smallest missing number k: %e A261015 000 1 %e A261015 001 2 %e A261015 010 3 %e A261015 011 2 %e A261015 100 3 %e A261015 101 3 %e A261015 110 4 %e A261015 111 0 %t A261015 notVis[bits_] := For[i = 0, True, i++, If[SequencePosition[bits, IntegerDigits[i, 2]] == {}, Return[i]]]; %t A261015 T[n_, k_] := Select[Rest[IntegerDigits[#, 2]]& /@ Range[2^n, 2^(n+1)-1], notVis[#] == k&] // Length; %t A261015 Table[T[n, k], {n, 1, 6}, {k, 0, 2^n-1}] // Flatten (* _Jean-François Alcover_, Aug 02 2018 *) %Y A261015 Cf. A260273, A261016, A261017. %Y A261015 See A261019 for a more compact version (which has further information about the columns). %K A261015 nonn,tabf %O A261015 1,9 %A A261015 _N. J. A. Sloane_, Aug 16 2015 %E A261015 More terms from _Alois P. Heinz_, Aug 17 2015