This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261018 #14 Aug 02 2018 07:25:03 %S A261018 2,2,3,3,4,2,3,3,4,4,2,3,3,5,7,5,5,4,3,3,5,5,3,3,4,4,4,5,7,4,5,5,4,3, %T A261018 3,5,5,3,3,6,8,3,3,4,4,7,4,4,5,5,5,7,7,4,5,9,5,4,4,4,3,3,3,6,3,3,6,9, %U A261018 5,6,5,7,8,3,3,6,3,3,4,4,4,7,4,4,8,4,4,5,5 %N A261018 First differences of A260273. %C A261018 a(n) = A261461(A260273(n)). - _Reinhard Zumkeller_, Aug 30 2015 %H A261018 N. J. A. Sloane, <a href="/A261018/b261018.txt">Table of n, a(n) for n = 1..19999</a> %t A261018 b[1] = 1; %t A261018 b[n_] := b[n] = Module[{bits, k}, bits = IntegerDigits[b[n-1], 2]; For[k = 1, True, k++, If[SequencePosition[bits, IntegerDigits[k, 2]] == {}, Return[b[n-1] + k]]]]; %t A261018 a[n_] := b[n+1] - b[n]; %t A261018 Array[a, 100] (* _Jean-François Alcover_, Aug 02 2018 *) %o A261018 (Python) %o A261018 A261018_list, a = [], 1 %o A261018 for i in range(10**3): %o A261018 b, s = 1, format(a,'b') %o A261018 while format(b,'b') in s: %o A261018 b += 1 %o A261018 a += b %o A261018 s = format(a,'b') %o A261018 A261018_list.append(b) # _Chai Wah Wu_, Aug 26 2015 %o A261018 (Haskell) %o A261018 a261018 n = a261018_list !! (n-1) %o A261018 a261018_list = zipWith (-) (tail a260273_list) a260273_list %o A261018 -- _Reinhard Zumkeller_, Aug 30 2015 %Y A261018 Cf. A260273. %Y A261018 Cf. A261645, A261461. %K A261018 nonn %O A261018 1,1 %A A261018 _N. J. A. Sloane_, Aug 17 2015