cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261025 Decimal expansion of Cl_2(Pi/4), where Cl_2 is the Clausen function of order 2.

Original entry on oeis.org

9, 8, 1, 8, 7, 2, 1, 5, 1, 0, 5, 0, 2, 0, 3, 3, 5, 6, 7, 1, 7, 9, 2, 4, 5, 4, 3, 0, 6, 0, 1, 9, 5, 6, 6, 7, 1, 3, 0, 7, 9, 0, 9, 7, 1, 6, 6, 0, 7, 3, 0, 4, 6, 1, 5, 7, 6, 6, 1, 3, 1, 3, 4, 6, 5, 3, 1, 5, 5, 6, 6, 5, 0, 4, 9, 7, 6, 9, 6, 3, 6, 2, 2, 4, 9, 0, 2, 8, 0, 2, 8, 8, 4, 3, 8, 7, 7, 2, 4, 1, 2, 3, 9, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Aug 07 2015

Keywords

Examples

			0.9818721510502033567179245430601956671307909716607304615766131...
		

Crossrefs

Cf. A006752 (Cl_2(Pi/2) = Catalan's constant), A143298 (Cl_2(Pi/3) = Gieseking's constant), A261024 (Cl_2(2*Pi/3)), A261026 (Cl_2(3*Pi/4)), A261027 (Cl_2(Pi/6)), A261028 (Cl_2(5*Pi/6)).

Programs

  • Mathematica
    Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/4] // Re, 10, 105] // First

Formula

Equals 2*Pi*log(G(7/8)/G(1/8)) - 2*Pi*LogGamma(1/8) + (Pi/4) * log(2*Pi/sqrt(2-sqrt(2))), where G is the Barnes G function.