A261027 Decimal expansion of Cl_2(Pi/6), where Cl_2 is the Clausen function of order 2.
8, 6, 4, 3, 7, 9, 1, 3, 1, 0, 5, 3, 8, 9, 2, 7, 4, 9, 6, 2, 5, 0, 3, 6, 3, 1, 5, 1, 9, 0, 2, 1, 9, 4, 7, 8, 6, 6, 8, 1, 8, 8, 5, 7, 6, 4, 0, 3, 6, 8, 9, 7, 0, 4, 1, 8, 2, 0, 3, 7, 6, 8, 9, 7, 7, 5, 3, 2, 4, 7, 1, 5, 5, 8, 2, 0, 6, 4, 1, 8, 5, 1, 8, 7, 0, 2, 1, 9, 3, 0, 5, 0, 7, 8, 0, 7, 5, 7, 7, 9, 0, 2, 1, 8
Offset: 0
Examples
0.8643791310538927496250363151902194786681885764036897041820...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's MathWorld, Clausen Function
- Eric Weisstein's MathWorld, Clausen's Integral
- Eric Weisstein's MathWorld, Barnes G-Function
- Wikipedia, Clausen function
- Wikipedia, Barnes G-function
Crossrefs
Programs
-
Mathematica
Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); RealDigits[Cl2[Pi/6] // Re, 10, 104] // First
Formula
Equals 2*Pi*log(G(11/12)/G(1/12)) - 2*Pi*LogGamma(1/12) + (Pi/6) * log(2*Pi*sqrt(2)/(sqrt(3)-1)), where G is the Barnes G function.