This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261032 #34 Sep 08 2022 08:46:13 %S A261032 0,-1,255,-6306,59230,-331395,1348221,-4416580,12360636,-30686085, %T A261032 69313915,-145044966,284936730,-530793991,944995065,-1617895560, %U A261032 2677071736,-4298685705,6721274871,-10262288170,15337711830,-22485147531,32390726005,-45920259276,64155054900,-88432835725 %N A261032 a(n) = (-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2. %C A261032 Alternating sum of eighth powers (A001016). %C A261032 For n>0, a(n) is divisible by A000217(n). %H A261032 Robert Israel, <a href="/A261032/b261032.txt">Table of n, a(n) for n = 0..10000</a> %H A261032 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (-9,-36,-84,-126,-126,-84,-36,-9,-1 ). %F A261032 G.f.: -x*(1 - 246*x + 4047*x^2 - 11572*x^3 + 4047*x^4 - 246*x^5 + x^6)/(1 + x)^9. %F A261032 a(n) = Sum_{k = 0..n} (-1)^k*k^8. %F A261032 a(n) = (-1)^n*n*(n + 1)*(n^6 + 3*n^5 - 3*n^4 - 11*n^3 + 11*n^2 + 17*n - 17)/2. %F A261032 Sum_{n>0} 1/a(n) = -0.9962225712723456482... %F A261032 Sum_{j=0..9} binomial(9,j)*a(n-j) = 0. - _Robert Israel_, Nov 18 2015 %F A261032 E.g.f.: (x/2)*(-2 +253*x -1848*x^2 +2961*x^3 -1596*x^4 +350*x^5 -32*x^6 +x^7)*exp(-x). - _G. C. Greubel_, Apr 02 2021 %e A261032 a(0) = 0^8 = 0, %e A261032 a(1) = 0^8 -1^8 = -1, %e A261032 a(2) = 0^8 -1^8 + 2^8 = 255, %e A261032 a(3) = 0^8 -1^8 + 2^8 - 3^8 = -6306, %e A261032 a(4) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 = 59230, %e A261032 a(5) = 0^8 -1^8 + 2^8 - 3^8 + 4^8 - 5^8 = -331395, etc. %p A261032 seq((-1)^n*(n^8 + 4*n^7 - 14*n^5 + 28*n^3 - 17*n)/2, n = 0 .. 100); # _Robert Israel_, Nov 18 2015 %t A261032 Table[(1/2) (-1)^n n (n + 1) (n^6 + 3 n^5 - 3 n^4 - 11 n^3 + 11 n^2 + 17 n - 17), {n, 0, 25}] %o A261032 (PARI) vector(100, n, n--; (-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2) \\ _Altug Alkan_, Nov 18 2015 %o A261032 (Magma) [(-1)^n*(n^8+4*n^7-14*n^5+28*n^3-17*n)/2: n in [0..30]]; // _Vincenzo Librandi_, Nov 20 2015 %o A261032 (Sage) [(-1)^n*(n^8 +4*n^7 -14*n^5 +28*n^3 -17*n)/2 for n in (0..40)] # _G. C. Greubel_, Apr 02 2021 %Y A261032 Cf. A000217, A001016, A000542, A089594, A232599, A062392, A062393, A152725, A152726. %K A261032 sign,easy %O A261032 0,3 %A A261032 _Ilya Gutkovskiy_, Nov 18 2015