cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261038 a(1)=1; for n>1: a(n) = a(n-1)*n if t=0, a(n) = round(a(n-1)/n) if t=1, a(n) = a(n-1)+n if t=2, a(n) = a(n-1)-n if t=3, where t = n mod 4.

This page as a plain text file.
%I A261038 #53 May 25 2018 12:11:10
%S A261038 1,3,0,0,0,6,-1,-8,-1,9,-2,-24,-2,12,-3,-48,-3,15,-4,-80,-4,18,-5,
%T A261038 -120,-5,21,-6,-168,-6,24,-7,-224,-7,27,-8,-288,-8,30,-9,-360,-9,33,
%U A261038 -10,-440,-10,36,-11,-528,-11,39,-12,-624,-12,42,-13,-728,-13,45,-14
%N A261038 a(1)=1; for n>1: a(n) = a(n-1)*n if t=0, a(n) = round(a(n-1)/n) if t=1, a(n) = a(n-1)+n if t=2, a(n) = a(n-1)-n if t=3, where t = n mod 4.
%C A261038 a(4*n+1) = 1,  0,  -1,  -2,  -3, ...
%C A261038 a(4*n+2) = 3,  6,   9,  12,  15, ...
%C A261038 a(4*n+3) = 0, -1,  -2,  -3,  -4, ...
%C A261038 a(4*n+4) = 0, -8, -24, -48, -80, ... = -A033996(n).
%H A261038 Alois P. Heinz, <a href="/A261038/b261038.txt">Table of n, a(n) for n = 1..10000</a>
%H A261038 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
%F A261038 From _Colin Barker_, Aug 09 2015: (Start)
%F A261038 a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
%F A261038 G.f.: -x*(x^10+2*x^8-8*x^7-x^6-3*x^5-3*x^4+3*x+1) / ((x-1)^3*(x+1)^3*(x^2+1)^3).
%F A261038 (End)
%e A261038 a(1) =                    1.
%e A261038 a(2) =       a(1) + 2  =  3.
%e A261038 a(3) =       a(2) - 3  =  0.
%e A261038 a(4) =       a(3) * 4  =  0.
%e A261038 a(5) = round(a(4) / 5) =  0.
%e A261038 a(6) =       a(5) + 6  =  6.
%e A261038 a(7) =       a(6) - 7  = -1.
%p A261038 a:= proc(n) option remember; `if`(n=1, 1, (t->
%p A261038       `if`(t=0, a(n-1)*n, `if`(t=1, round(a(n-1)/n),
%p A261038       `if`(t=2, a(n-1)+n, a(n-1)-n))))(irem(n, 4)))
%p A261038     end:
%p A261038 seq(a(n), n=1..100);  # _Alois P. Heinz_, Aug 08 2015
%t A261038 nxt[{n_,a_}]:=Module[{t=Mod[n+1,4]},{n+1,Which[t==0,a(n+1), t==1,Round[ a/(n+1)], t==2,a+n+1,t==3,a-n-1]}]; NestList[nxt,{1,1},100][[All,2]] (* or *) LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{1,3,0,0,0,6,-1,-8,-1,9,-2,-24},100] (* _Harvey P. Dale_, May 25 2018 *)
%o A261038 (PARI) Vec(-x*(x^10+2*x^8-8*x^7-x^6-3*x^5-3*x^4+3*x+1)/((x-1)^3*(x+1)^3*(x^2+1)^3) + O(x^100)) \\ _Colin Barker_, Aug 10 2015
%o A261038 (PARI) first(m)=my(v=vector(m),t);v[1]=1;for(i=2,m,t = i%4;if(t==0,v[i]=v[i-1]*i,if(t==1,v[i]=round(v[i-1]/i),if(t==2,v[i]=v[i-1]+i,v[i]=v[i-1]-i ))));v; \\ _Anders Hellström_, Aug 17 2015
%Y A261038 Cf. A033996.
%K A261038 sign,easy
%O A261038 1,2
%A A261038 _Peter Woodward_, Aug 07 2015
%E A261038 More terms from _Alois P. Heinz_, Aug 08 2015
%E A261038 Edited by _Jon E. Schoenfield_, Aug 08 2015
%E A261038 Corrected by _Harvey P. Dale_, May 25 2018