This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261052 #15 Jul 02 2018 01:53:01 %S A261052 1,1,2,8,31,157,915,6213,48240,423398,4147775,44882107,531564195, %T A261052 6837784087,94909482330,1413561537884,22482554909451,380269771734265, %U A261052 6815003300096013,128992737080703803,2571218642722865352,53835084737513866662,1181222084520177393143 %N A261052 Expansion of Product_{k>=1} (1+x^k)^(k!). %C A261052 Weigh transform of the factorial numbers. - _Alois P. Heinz_, Jun 11 2018 %H A261052 Alois P. Heinz, <a href="/A261052/b261052.txt">Table of n, a(n) for n = 0..450</a> %F A261052 a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10). %p A261052 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A261052 add(binomial(i!, j)*b(n-i*j,i-1), j=0..n/i))) %p A261052 end: %p A261052 a:= n-> b(n$2): %p A261052 seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 08 2015 %t A261052 nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!),{k,1,nmax}],{x,0,nmax}],x] %o A261052 (PARI) seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ _Andrew Howroyd_, Jun 22 2018 %Y A261052 Cf. A000142, A107895, A168246, A261053, A026007, A027998, A248882, A102866, A256142. %K A261052 nonn %O A261052 0,3 %A A261052 _Vaclav Kotesovec_, Aug 08 2015