cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261073 Semiprimes whose prime factors are of equal binary length and which differ from each other in one bit position only.

This page as a plain text file.
%I A261073 #22 Feb 22 2025 20:05:17
%S A261073 6,35,323,437,713,899,1763,1961,2021,2537,3233,4757,5561,5609,6497,
%T A261073 7313,9797,10403,10961,11009,18209,19043,21353,22499,23393,26969,
%U A261073 27221,29177,37001,38021,39203,45113,71273,72899,79523,87953,95477,98201,99221,106793,114857,114929,123353
%N A261073 Semiprimes whose prime factors are of equal binary length and which differ from each other in one bit position only.
%H A261073 Antti Karttunen, <a href="/A261073/b261073.txt">Table of n, a(n) for n = 1..5000</a>
%e A261073 6 = 2*3 is present, as 2 in binary is "10" and 3 in binary is "11", so both have two (significant) bits and they differ only in one bit-position from each other.
%e A261073 35 = 5*7 is present, as 5 in binary is "101" and 7 in binary is "111", which both have three bits, differing only in the middle position from each other.
%t A261073 Select[Range[10^6], And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #, Total@ BitXor[IntegerDigits[#1, 2], IntegerDigits[#2, 2]] == 1 & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* _Michael De Vlieger_, Oct 08 2016 *)
%o A261073 (PARI)
%o A261073 A000523 = n -> logint(n, 2);
%o A261073 A020639(n) = if(1==n,n,vecmin(factor(n)[, 1]));
%o A261073 isA261073(n) = { my(a,b); if(bigomega(n)!=2, 0, a=A020639(n); b = (n/a); ((A000523(a) == A000523(b)) && (1 == norml2(binary(bitxor(a,b)))))); };
%o A261073 i=0; n=0; while(i < 5000, n++; if(isA261073(n), i++; write("b261073.txt", i, " ", n)));
%o A261073 (Scheme)
%o A261073 ;; With _Antti Karttunen_'s IntSeq-library.
%o A261073 (define A261073 (MATCHING-POS 1 1 (lambda (n) (and (= 2 (A001222 n)) (= (A000523 (A020639 n)) (A000523 (A006530 n))) (= 1 (A101080bi (A020639 n) (A006530 n)))))))
%Y A261073 Cf. A000523, A001222, A006530, A020639, A101080.
%Y A261073 Cf. also A261074, A261075.
%Y A261073 Cf. A071697 (a subsequence).
%Y A261073 Intersection of A085721 and A261077.
%K A261073 nonn,base
%O A261073 1,1
%A A261073 _Antti Karttunen_, Sep 22 2015