cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261124 Decimal expansion of 'theta', the expected degree (valency) of the root of a random rooted tree with n vertices.

Original entry on oeis.org

2, 1, 9, 1, 8, 3, 7, 4, 0, 3, 1, 9, 7, 1, 2, 6, 3, 0, 6, 4, 7, 8, 6, 9, 9, 5, 0, 2, 8, 5, 7, 5, 3, 6, 4, 9, 1, 1, 0, 6, 1, 8, 3, 5, 0, 7, 5, 8, 2, 4, 5, 0, 3, 8, 1, 5, 6, 3, 4, 4, 9, 2, 7, 7, 9, 1, 6, 4, 2, 8, 1, 3, 0, 3, 1, 8, 2, 8, 4, 1, 1, 5, 0, 4, 3, 0, 0, 7, 6, 4, 3, 6, 3, 8, 8, 8, 7, 3, 6, 9
Offset: 1

Views

Author

Jean-François Alcover, Aug 09 2015

Keywords

Examples

			2.19183740319712630647869950285753649110618350758245...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

Crossrefs

Cf. A000081 (T_n), A051491 (alpha), A272056 (variance).

Programs

  • Mathematica
    Clear[th]; digits = 100; m0 = 100; dm = 100; th[max_] := th[max] = (Clear[T, s, a]; T[0] = 0; T[1] = 1; T[n_] := T[n] = Sum[Sum[d*T[d], {d, Divisors[j]} ] * T[n-j], {j, 1, n-1}]/(n-1); s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[ A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; 2+Sum[T[j]*1/(alpha^j*(alpha^j-1)), {j, 1, max}]); th[m0]; th[max = m0 + dm]; While[Print["max = ", max]; RealDigits[th[max], 10, digits] != RealDigits[th[max - dm], 10, digits], max = max + dm];theta = th[max]; RealDigits[theta, 10, digits] // First

Formula

theta = 2 + Sum_{j>=1} T_j/(alpha^j*(alpha^j-1)), where T_j is A000081(j) and alpha A051491.