This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261129 #15 Jul 29 2023 03:17:15 %S A261129 1,1,1,1,2,2,1,2,2,2,2,2,3,3,2,2,2,2,2,2,3,3,2,2,3,3,3,3,4,4,2,3,3,3, %T A261129 2,2,3,3,2,2,3,3,3,3,4,4,2,2,3,3,3,3,4,4,3,3,4,4,4,4,5,5,2,2,2,2,2,2, %U A261129 3,3,2,2,3,3,3,3,4,4,2,4,4,4,3,3,4,4,4 %N A261129 Highest exponent in prime factorization of the swinging factorial (A056040). %C A261129 A263922 is a subsequence. %H A261129 Amiram Eldar, <a href="/A261129/b261129.txt">Table of n, a(n) for n = 2..10000</a> %F A261129 a(n) = A051903(A056040(n)) for n>=2. %F A261129 A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2). %p A261129 swing := n -> n!/iquo(n,2)!^2: %p A261129 max_exp := n -> max(seq(s[2], s=ifactors(n)[2])): %p A261129 seq(max_exp(swing(n)), n=2..88); %t A261129 a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* _Amiram Eldar_, Jul 29 2023 *) %o A261129 (Sage) %o A261129 swing = lambda n: factorial(n)//factorial(n//2)^2 %o A261129 max_exp = lambda n: max(e for p, e in n.factor()) %o A261129 [max_exp(swing(n)) for n in (2..88)] %Y A261129 Cf. A000120, A000523, A056040, A263922. %K A261129 nonn %O A261129 2,5 %A A261129 _Peter Luschny_, Oct 31 2015