cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261129 Highest exponent in prime factorization of the swinging factorial (A056040).

This page as a plain text file.
%I A261129 #15 Jul 29 2023 03:17:15
%S A261129 1,1,1,1,2,2,1,2,2,2,2,2,3,3,2,2,2,2,2,2,3,3,2,2,3,3,3,3,4,4,2,3,3,3,
%T A261129 2,2,3,3,2,2,3,3,3,3,4,4,2,2,3,3,3,3,4,4,3,3,4,4,4,4,5,5,2,2,2,2,2,2,
%U A261129 3,3,2,2,3,3,3,3,4,4,2,4,4,4,3,3,4,4,4
%N A261129 Highest exponent in prime factorization of the swinging factorial (A056040).
%C A261129 A263922 is a subsequence.
%H A261129 Amiram Eldar, <a href="/A261129/b261129.txt">Table of n, a(n) for n = 2..10000</a>
%F A261129 a(n) = A051903(A056040(n)) for n>=2.
%F A261129 A000120(floor(n/2)) <= a(n) <= A000523(n), (n>=2).
%p A261129 swing := n -> n!/iquo(n,2)!^2:
%p A261129 max_exp := n -> max(seq(s[2], s=ifactors(n)[2])):
%p A261129 seq(max_exp(swing(n)), n=2..88);
%t A261129 a[n_] := Max[FactorInteger[n!/Quotient[n, 2]!^2][[;; , 2]]]; Array[a, 100, 2] (* _Amiram Eldar_, Jul 29 2023 *)
%o A261129 (Sage)
%o A261129 swing = lambda n: factorial(n)//factorial(n//2)^2
%o A261129 max_exp = lambda n: max(e for p, e in n.factor())
%o A261129 [max_exp(swing(n)) for n in (2..88)]
%Y A261129 Cf. A000120, A000523, A056040, A263922.
%K A261129 nonn
%O A261129 2,5
%A A261129 _Peter Luschny_, Oct 31 2015