A260753 Least positive integer k such that both k and k*n belong to the set {m>0: prime(prime(m))-prime(m)+1 = prime(p) for some prime p}.
2, 2, 2279, 5806, 4, 1135, 816, 6556, 725, 2, 1333, 10839, 27, 829, 2279, 2838, 3881, 6540, 2564, 2, 7830, 6540, 27, 4905, 6121, 8220, 316, 1061, 2, 14691, 2, 1168, 738, 4707, 785, 12467, 5492, 1447, 542, 538, 12840, 829, 4732, 5637, 785, 1246, 1198, 433, 58, 573, 26280, 17387, 316, 430, 1198, 4315, 4315, 1479, 4315, 1497
Offset: 1
Keywords
Examples
a(3) = 2279 since prime(prime(2279))-prime(2279)+1 = prime(20147)-20147+1 = 226553-20146 = 206407 = prime(18503) with 18503 prime, and prime(prime(2279*3))-prime(2279*3)+1 = prime(68777)-68777+1 = 865757-68776 = 796981 = prime(63737) with 63737 prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- Zhi-Wei Sun, Checking the conjecture for s = -1, t = 1 and r = a/b (a,b = 1..125)
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[Prime[n]]-Prime[n]+1 PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] Do[k=0;Label[bb];k=k+1;If[PQ[f[k]]&&PQ[f[k*n]],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,60}]
Comments