cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261143 a(n) = H_n(1,2) where H_n is the n-th hyperoperator.

Original entry on oeis.org

3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Natan Arie Consigli, Aug 24 2015

Keywords

Comments

See A054871 for definitions and key links.
Sequence is also the decimal expansion of 2989/9000.

Examples

			a(0) = H_0(1,2) = 2+1 = 3;
a(1) = H_1(1,2) = 1+2 = 3;
a(2) = H_2(1,2) = 1*2 = 2;
a(3) = H_3(1,2) = 1^2 = 1;
a(4) = H_4(1,2) = 1^^2 = 1.
		

Crossrefs

Cf. A054871.

Formula

From Elmo R. Oliveira, Jul 16 2024: (Start)
G.f.: (3-x^2-x^3)/(1-x).
a(n) = 1 for n >= 3. (End)
E.g.f.: exp(x) + 2 + 2*x + x^2/2. - Elmo R. Oliveira, Aug 09 2024