A261151 a(n) = 11410337850553 + (n-1)*4609098694200.
11410337850553, 11871247719973, 12332157589393, 12793067458813, 13253977328233, 13714887197653, 14175797067073, 14636706936493, 15097616805913, 15558526675333, 16019436544753, 16480346414173, 16941256283593, 17402166153013, 17863076022433, 18323985891853
Offset: 1
Examples
a(22) = 11410337850553 + 21*4609098694200 = 108201410428753 is prime.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Jens Kruse Andersen, All known AP24 to AP26.
- Wikipedia, Largest known primes in AP.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[11410337850553+(n-1)*4609098694200: n in [1..20]];
-
Mathematica
Table[11410337850553 + (n - 1) 4609098694200, {n, 1, 20}]
-
PARI
Vec(-x*(10949427981133*x-11410337850553) / (x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015
-
Sage
[11410337850553+(n-1)*4609098694200 for n in (1..20)]
Formula
a(n) = 11410337850553 + (n-1)*475180*A002110(8).
G.f.: -x*(10949427981133*x-11410337850553) / (x-1)^2. - Colin Barker, Aug 25 2015
Comments