cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261172 Value of b for which A260871(n) = A[b](k), with k = A261171(n); A[b](k) = the number whose base-b representation is the concatenation of the base-b representations of (1, ..., k, k-1, ..., 1).

Original entry on oeis.org

2, 3, 2, 4, 3, 6, 9, 10, 11, 16, 12, 14, 22, 18, 25, 20, 2, 6, 18, 14, 7, 40, 31, 25, 23, 20, 22, 62, 65, 68, 29, 23, 38, 26, 104, 6, 34, 52
Offset: 1

Views

Author

M. F. Hasler, Aug 23 2015

Keywords

Comments

For more data, see the 2nd column of D. Broadhurst's list of [n, b, k, length(A260871(n))] given in A260871.

Examples

			A260871(1) = A[2](2), therefore a(1) = 2.
A260871(2) = A[3](3), therefore a(2) = 3.
A260871(3) = A[2](4), therefore a(3) = 2.
		

Crossrefs

Cf. A173427, A260853 - A260859, A173426, A260861 - A260866 and A260860 for A[b] with b=2, ..., b=16 and b=60.
See also A260852 = { primes of the form A260851(b) = A[b](b), b in A260343 }.

Programs

  • PARI
    A261172_list(LIM=1e499)={my(A=List(),p,d);for(b=2,9e9,for(n=b,9e9,if(LIMb)));ispseudoprime(p)&&listput(A,[log(p),n])));apply(t->t[2],vecsort(A))}

Formula

A260871(n) = A[a(n)](A261171(n)), where A[b](k) = Sum_{i=1..#d} d[i]*b^(#d-i), d = concatenation of (1, 2, ..., k, k-1, ..., 1) all written in base b.