cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261182 Primes having only {2, 7, 9} as digits.

This page as a plain text file.
%I A261182 #17 Jul 20 2025 17:39:15
%S A261182 2,7,29,79,97,227,229,277,727,797,929,977,997,2297,2729,2777,2797,
%T A261182 2927,2999,7229,7297,7727,7927,9227,9277,9929,22229,22277,22279,22727,
%U A261182 22777,27277,27299,27779,27799,27997,29297,29927,72227,72229,72277,72727,72797
%N A261182 Primes having only {2, 7, 9} as digits.
%C A261182 A020459, A020460 and A020471 are subsequences.
%H A261182 Jason Bard, <a href="/A261182/b261182.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Chai Wah Wu)
%H A261182 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a>
%t A261182 Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 7, 9}] == {} &]
%t A261182 Select[Flatten[Table[FromDigits/@Tuples[{2,7,9},n],{n,5}]],PrimeQ] (* _Harvey P. Dale_, Dec 17 2024 *)
%o A261182 (Magma) [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [2, 7, 9]];
%o A261182 (Python)
%o A261182 from gmpy2 import is_prime
%o A261182 from itertools import product
%o A261182 A261182_list = [int(''.join(d)) for l in range(1,10) for d in product('279',repeat=l) if is_prime(int(''.join(d)))] # _Chai Wah Wu_, Aug 11 2015
%Y A261182 Cf. similar sequences listed in A261181.
%Y A261182 Cf. A000040, A020459, A020460, A020471, A385776.
%K A261182 nonn,easy,base
%O A261182 1,1
%A A261182 _Vincenzo Librandi_, Aug 11 2015