cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261192 a(0) = 2; for n>0, a(n) = smallest prime p such that p > a(n-1) and p is congruent to n modulo prime(n).

This page as a plain text file.
%I A261192 #21 Jan 23 2018 06:53:07
%S A261192 2,3,5,13,53,71,97,109,179,193,271,383,419,587,659,673,811,1433,1543,
%T A261192 1627,2221,2357,4051,4339,4919,5651,5783,6619,6983,7877,8053,11969,
%U A261192 12739,12911,14629,15233,15287,15737,18131,18743,20627,21163,21943,22963,23011,23291,25717,26633,27031,27743
%N A261192 a(0) = 2; for n>0, a(n) = smallest prime p such that p > a(n-1) and p is congruent to n modulo prime(n).
%C A261192 a(n) == A186102(n) == A260416(n) (mod n).
%C A261192 a(10314) = 10000363333.
%H A261192 Ivan N. Ianakiev and Robert G. Wilson v, <a href="/A261192/b261192.txt">Table of n, a(n) for n = 0..100000</a>
%e A261192 a(4) = 53 because prime(4) = 7, 53 == 4 (mod 7) and 53 is the smallest such prime greater than a(3) = 13.
%t A261192 f[n_] := f[n] = Block[{k = Prime@ n, q = Prime@ n}, While[k + n <= f[n - 1] || ! PrimeQ[k + n], k += q]; k + n]; f[0] = 2; Array[f, 50, 0]
%Y A261192 Cf. A186102, A260416.
%K A261192 nonn
%O A261192 0,1
%A A261192 _Ivan N. Ianakiev_ and _Robert G. Wilson v_, Aug 11 2015