A261200 Minimal prime concatenation sequence with base 2 and seed 1.
1, 10, 101, 1011, 10111, 101111, 10111111, 101111111, 101111111011, 10111111101101, 101111111011010011, 10111111101101001101111, 10111111101101001101111101, 1011111110110100110111110101, 101111111011010011011111010111, 1011111110110100110111110101111
Offset: 1
Examples
In base 2, the least prime starting with seed 1 is 10; the least prime starting with 10 is 101; the least prime starting with 101 is 1011. Triangular format: 1 10 101 1011 10111 101111 10111111 101111111 101111111011
Links
- Clark Kimberling, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
b = 2; s = {{1}}; Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s], (nn = #; IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &]; AppendTo[s, tmp], {30}]; Map[FromDigits, s] Map[FromDigits, s] (* A261200 *) Map[FromDigits[#, b] &, s] (* A261201 *) (* Peter J. C. Moses, Aug 06 2015 *)