cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261209 First differences of partitions of n in the ordering A080577.

This page as a plain text file.
%I A261209 #12 Mar 07 2020 09:04:31
%S A261209 1,2,0,1,3,1,1,0,0,1,4,2,1,0,2,1,0,1,0,0,0,1,5,3,1,1,2,2,0,1,0,1,1,1,
%T A261209 0,0,1,0,0,0,0,1,6,4,1,2,2,3,0,1,0,3,1,1,1,2,0,0,1,0,0,2,0,1,0,1,1,0,
%U A261209 0,0,1,0,0,0,0,0,1
%N A261209 First differences of partitions of n in the ordering A080577.
%e A261209 For n=6:
%e A261209 [6]
%e A261209 [4, 1]
%e A261209 [2, 2]
%e A261209 [3, 0, 1]
%e A261209 [0, 3]
%e A261209 [1, 1, 1]
%e A261209 [2, 0, 0, 1]
%e A261209 [0, 0, 2]
%e A261209 [0, 1, 0, 1]
%e A261209 [1, 0, 0, 0, 1]
%e A261209 [0, 0, 0, 0, 0, 1]
%o A261209 (Sage)
%o A261209 def A261209(n):
%o A261209     delta = lambda p: [p[i]-p[i+1] for i in (0..len(p)-2)]+[p[-1]] if p else []
%o A261209     return [delta(p) for p in Partitions(n)]
%o A261209 [A261209(n) for n in (1..6)]
%Y A261209 Cf. A080577.
%K A261209 nonn,tabf
%O A261209 1,2
%A A261209 _Peter Luschny_, Aug 12 2015