This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261209 #12 Mar 07 2020 09:04:31 %S A261209 1,2,0,1,3,1,1,0,0,1,4,2,1,0,2,1,0,1,0,0,0,1,5,3,1,1,2,2,0,1,0,1,1,1, %T A261209 0,0,1,0,0,0,0,1,6,4,1,2,2,3,0,1,0,3,1,1,1,2,0,0,1,0,0,2,0,1,0,1,1,0, %U A261209 0,0,1,0,0,0,0,0,1 %N A261209 First differences of partitions of n in the ordering A080577. %e A261209 For n=6: %e A261209 [6] %e A261209 [4, 1] %e A261209 [2, 2] %e A261209 [3, 0, 1] %e A261209 [0, 3] %e A261209 [1, 1, 1] %e A261209 [2, 0, 0, 1] %e A261209 [0, 0, 2] %e A261209 [0, 1, 0, 1] %e A261209 [1, 0, 0, 0, 1] %e A261209 [0, 0, 0, 0, 0, 1] %o A261209 (Sage) %o A261209 def A261209(n): %o A261209 delta = lambda p: [p[i]-p[i+1] for i in (0..len(p)-2)]+[p[-1]] if p else [] %o A261209 return [delta(p) for p in Partitions(n)] %o A261209 [A261209(n) for n in (1..6)] %Y A261209 Cf. A080577. %K A261209 nonn,tabf %O A261209 1,2 %A A261209 _Peter Luschny_, Aug 12 2015