cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261239 Coefficients in an asymptotic expansion of A259472 in falling factorials.

This page as a plain text file.
%I A261239 #15 Aug 12 2015 15:56:54
%S A261239 1,-3,0,-4,-21,-129,-910,-7242,-64155,-626319,-6685548,-77527104,
%T A261239 -971315713,-13084909917,-188723009274,-2902997766470,-47458671376503,
%U A261239 -821951603042523,-15037432614035864,-289828080356525052,-5870642802374608509,-124691017072423632777
%N A261239 Coefficients in an asymptotic expansion of A259472 in falling factorials.
%H A261239 Vaclav Kotesovec, <a href="/A261239/b261239.txt">Table of n, a(n) for n = 0..446</a>
%F A261239 a(n) ~ -3 * n! * (1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - 33944/n^7 - 438614/n^8 - 6266312/n^9 - 98050303/n^10), coefficients are A261253.
%F A261239 For n>0, a(n) = Sum_{k=1..n} A261214(k) * Stirling1(n-1, k-1).
%e A261239 A259472(n)/(-2*n!) ~ 1 - 3/n - 4/(n*(n-1)*(n-2)) - 21/(n*(n-1)*(n-2)*(n-3)) - 129/(n*(n-1)*(n-2)*(n-3)*(n-4)) - ... [coefficients are A261239]
%e A261239 A259472(n)/(-2*n!) ~ 1 - 3/n - 4/n^3 - 33/n^4 - 283/n^5 - 2785/n^6 - ... [coefficients are A261214]
%t A261239 CoefficientList[Assuming[Element[x, Reals], Series[E^(3/x) * x^3 / ExpIntegralEi[1/x]^3, {x, 0, 25}]], x]
%Y A261239 Cf. A003319, A260503, A259472, A261214, A261253, A261254.
%K A261239 sign
%O A261239 0,2
%A A261239 _Vaclav Kotesovec_, Aug 12 2015