cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261241 One half of numbers representable in at least two different ways as sums of four nonvanishing cubes. See A259060 for these numbers and their representations.

This page as a plain text file.
%I A261241 #22 Jan 27 2025 14:41:15
%S A261241 3213,3950,4807,5796,6929,8218,9675,11312,13141,15174,17423,19900,
%T A261241 22617,25586,28819,32328,36125,40222,44631,49364,54433,59850,65627,
%U A261241 71776,78309,85238,92575,100332,108521,117154,126243,135800,145837,156366
%N A261241 One half of numbers representable in at least two different ways as sums of four nonvanishing cubes. See A259060 for these numbers and their representations.
%C A261241 See A259060. There may be other numbers with this property.
%D A261241 W. SierpiƄski, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.
%H A261241 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A261241 a(n) = (n+9)*(2*n^2 + 36*n + 357), n >= 0.
%F A261241 O.g.f.: (3213 - 8902*x + 8285*x^2 - 2584*x^3)/(1-x)^4.
%F A261241 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Vincenzo Librandi_, Aug 13 2015
%t A261241 CoefficientList[Series[(3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 13 2015 *)
%o A261241 (Magma) [(n+9)*(2*n^2 + 36*n + 357): n in [0..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A261241 (Magma) I:=[3213,3950,4807,5796]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Aug 13 2015
%Y A261241 Cf. A259060.
%K A261241 nonn,easy
%O A261241 0,1
%A A261241 _Wolfdieter Lang_, Aug 12 2015