A261242 Irregular triangle T(n, k) of number of connected bisymmetric n X n matrices B_n with 0 or 1 entries, B_n[1,1] = 1 = B_n[1,n], and k islands of 0's.
1, 1, 2, 1, 4, 1, 4, 12, 18, 12, 8, 6, 2, 44, 56, 120, 28, 88, 4, 36, 0, 8
Offset: 1
Examples
The irregular triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 ... 1: 1 2: 1 3: 2 1 4: 4 1 4 5: 12 18 12 8 6 2 6: 44 56 120 28 88 4 36 0 8 ... n=4: k=0: [[1,1,1,1], [1,1,1,1], [1,1,1,1], [1,1,1,1]], [[1,0,0,1], [0,1,1,0], [0,1,1,0], [1,0,0,1]], [[1,1,0,1], [1,1,1,0], [0,1,1,1], [1,0,1,1]], [[1,0,1,1], [0,1,1,1], [1,1,1,0], [1,1,0,1]]; k=1: [[1,1,1,1], [1,0,0,1], [1,0,0,1], [1,1,1,1]]; k=2: [[1,1,1,1], [1,0,1,1], [1,1,0,1], [1,1,1,1]], [[1,1,1,1], [1,1,0,1], [1,0,1,1], [1,1,1,1]], [[1,1,0,1], [1,0,1,0], [0,1,0,1], [1,0,1,1]], [[1,0,1,1], [0,1,0,1], [1,0,1,0], [1,1,0,1]].
Links
- Kival Ngaokrajang, Illustration of T(n,k) for n = 1..5, k >= 0, T(6,0), T(6,1), T(6,2), T(6,4), T(6,k) for k = 3, 5, 6, 8
- Wikipedia, Bisymmetric Matrix.
Comments