A261250 One half of the even entries of A033317.
1, 2, 1, 3, 1, 90, 2, 4, 2, 1, 6, 21, 5, 12, 910, 1, 2, 3, 6, 3, 2, 160, 1, 15, 12, 1794, 7, 45, 4550, 33, 6, 1, 10, 1287, 2, 113076990, 4, 8, 4, 2, 468, 15, 1, 133500, 215, 3315, 20, 3, 9, 3, 15498, 561, 26500, 1, 60, 630, 110532, 2, 3188676, 5, 10, 5, 2, 1557945, 65, 7570212227550, 1, 14, 6, 56648, 48, 455, 30, 14127
Offset: 1
Keywords
Examples
The [r(n), x0(n), y0(n)] values for n = 1..16 are: [2, 3, 2], [5, 9, 4], [6, 5, 2], [10, 19, 6], [12, 7, 2], [13, 649, 180], [14, 15, 4], [17, 33, 8], [18, 17, 4], [20, 9, 2], [21, 55, 12], [22, 197, 42], [26, 51, 10], [28, 127, 24], [29, 9801, 1820], [30, 11, 2], ...
Programs
-
Mathematica
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[n == 0, Return[{}]]; If[OddQ[n], n = 2 n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Select[DeleteCases[PellSolve /@ Range[200], {}][[All, 2]], EvenQ]/2 (* Jean-François Alcover, Aug 12 2023, using the PellSolve code given in A033317 *)
Comments