cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261254 Coefficients in an asymptotic expansion of A261239 in falling factorials.

This page as a plain text file.
%I A261254 #9 Aug 12 2015 16:12:41
%S A261254 1,-4,2,-4,-21,-136,-996,-8152,-73811,-733244,-7938186,-93126716,
%T A261254 -1178054657,-15998857056,-232339375664,-3594982133808,
%U A261254 -59070662442383,-1027605845674036,-18873206761567638,-365015243426704372,-7416392564276075453,-157957992952546414328
%N A261254 Coefficients in an asymptotic expansion of A261239 in falling factorials.
%H A261254 Vaclav Kotesovec, <a href="/A261254/b261254.txt">Table of n, a(n) for n = 0..446</a>
%F A261254 a(n) ~ -4 * n! * (1 - 5/n + 5/n^2 - 30/n^4 - 286/n^5 - 2960/n^6 - 34890/n^7 - 459705/n^8 - 6678641/n^9 - 105999991/n^10).
%F A261254 For n>0, a(n) = Sum_{k=1..n} A261253(k) * Stirling1(n-1, k-1).
%e A261254 A261239(n)/(-3*n!) ~ 1 - 4/n + 2/(n*(n-1)) - 4/(n*(n-1)*(n-2)) - 21/(n*(n-1)*(n-2)*(n-3)) - 136/(n*(n-1)*(n-2)*(n-3)*(n-4)) - 996/(n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)) - ... [coefficients are A261254]
%e A261254 A261239(n)/(-3*n!) ~ 1 - 4/n + 2/n^2 - 2/n^3 - 31/n^4 - 288/n^5 - 2939/n^6 - ... [coefficients are A261253]
%t A261254 CoefficientList[Assuming[Element[x, Reals], Series[E^(4/x) * x^4 / ExpIntegralEi[1/x]^4, {x, 0, 25}]], x]
%Y A261254 Cf. A003319, A260503, A259472, A261214, A261239, A261253.
%K A261254 sign
%O A261254 0,2
%A A261254 _Vaclav Kotesovec_, Aug 12 2015