cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261273 Take the list of positive rationals {R(n): n>=1} in the order defined by Calkin and Wilf (Recounting the Rationals, 1999); a(n) = denominator of R(prime(n)).

Table of values

n a(n)
1 2
2 1
3 2
4 1
5 2
6 3
7 4
8 3
9 2
10 4
11 1
12 7
13 8
14 5
15 2
16 8
17 4
18 5
19 5
20 4
21 11
22 3
23 8
24 12
25 9
26 12
27 5
28 8
29 11
30 10
31 1
32 6
33 14
34 9
35 18
36 7
37 13
38 11
39 8
40 18
41 12
42 19
43 2
44 11
45 16
46 7
47 13
48 3
49 10
50 17
51 18
52 4
53 13
54 6
55 8
56 6
57 16
58 5
59 23
60 22
61 13
62 26
63 17
64 10
65 23
66 16
67 19
68 29
69 18
70 23
71 22
72 12
73 7
74 25
75 11
76 2
77 20
78 23
79 26
80 29
81 18
82 31
83 8
84 27
85 11
86 14
87 16
88 27
89 24
90 7
91 18
92 4
93 9
94 14
95 11
96 6
97 8
98 20
99 13
100 21
101 19
102 32
103 22
104 30
105 17
106 23
107 26
108 40
109 18
110 43
111 7
112 41
113 44
114 27
115 13
116 20
117 17
118 14
119 36
120 30
121 49
122 37
123 50
124 34
125 31
126 28
127 39
128 12
129 19
130 33
131 23
132 16
133 9
134 31
135 24
136 15
137 24
138 25
139 30
140 50
141 31
142 46
143 17
144 22
145 27
146 18
147 55
148 50
149 29
150 8
151 41
152 36
153 25
154 14
155 23
156 10
157 17
158 32
159 47
160 40
161 26
162 34
163 13
164 22
165 32
166 14
167 5
168 27

List of values

[2, 1, 2, 1, 2, 3, 4, 3, 2, 4, 1, 7, 8, 5, 2, 8, 4, 5, 5, 4, 11, 3, 8, 12, 9, 12, 5, 8, 11, 10, 1, 6, 14, 9, 18, 7, 13, 11, 8, 18, 12, 19, 2, 11, 16, 7, 13, 3, 10, 17, 18, 4, 13, 6, 8, 6, 16, 5, 23, 22, 13, 26, 17, 10, 23, 16, 19, 29, 18, 23, 22, 12, 7, 25, 11, 2, 20, 23, 26, 29, 18, 31, 8, 27, 11, 14, 16, 27, 24, 7, 18, 4, 9, 14, 11, 6, 8, 20, 13, 21, 19, 32, 22, 30, 17, 23, 26, 40, 18, 43, 7, 41, 44, 27, 13, 20, 17, 14, 36, 30, 49, 37, 50, 34, 31, 28, 39, 12, 19, 33, 23, 16, 9, 31, 24, 15, 24, 25, 30, 50, 31, 46, 17, 22, 27, 18, 55, 50, 29, 8, 41, 36, 25, 14, 23, 10, 17, 32, 47, 40, 26, 34, 13, 22, 32, 14, 5, 27]