This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261296 #27 Sep 19 2024 19:39:44 %S A261296 6,384,4374,5687,24576,17576,27783,64350,93750,354375,279936,113750, %T A261296 363968,166972,370656,705894,263736,1572864,1124864,1778112,3187744, %U A261296 4225760,4118400,3795000,3188646,4145823,4697550,1111158,730575,6000000,8171316,2413071,8573750 %N A261296 Smaller of pairs (m, n), such that the difference of their squares is a cube and the difference of their cubes is a square. %C A261296 The numbers come in pairs: (6,10), (384, 640) etc. The larger numbers of the pairs can be found in A261328. The sequence has infinite subsequences: Once a pair is in the sequence all its zenzicubic multiples (i.e., by a 6th power) are also in this sequence. Primitive solutions are (6,10), (5687, 8954), (27883, 55566), (64350, 70434), .... %C A261296 Assumes m, n > 0 as otherwise (k^6, 0) will be a solution. Sequence sorted by increasing order of largest number in pair (A261328). - _Chai Wah Wu_, Aug 17 2015 %D A261296 H. E. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, New York, 1967, pp 56, 268, #177 %H A261296 Chai Wah Wu, <a href="/A261296/b261296.txt">Table of n, a(n) for n = 1..302</a> %H A261296 Gianlino, in reply to Smci, <a href="https://answers.yahoo.com/question/index?qid=20110722023859AAsGZxn">Solution method for "integers with the difference between their cubes is a square, and v.v."</a>, Yahoo! answers, 2011 %e A261296 10^3 - 6^3 = 784 = 28^2, 10^2 - 6^2 = 64 = 4^3. %e A261296 8954^3 - 5687^3 = 730719^2, 8954^2 - 5687^2 = 363^3. %o A261296 (Python) %o A261296 def cube(z, p): %o A261296 iscube=False %o A261296 y=int(pow(z, 1/p)+0.01) %o A261296 if y**p==z: %o A261296 iscube=True %o A261296 return iscube %o A261296 for n in range (1, 10**5): %o A261296 for m in range(n+1, 10**5): %o A261296 a=(m-n)*(m**2+m*n+n**2) %o A261296 b=(m-n)*(m+n) %o A261296 if cube(a, 2)==True and cube(b, 3)==True: %o A261296 print (n, m) %Y A261296 Cf. A000290, A000578, A001014, A261328. %K A261296 nonn %O A261296 1,1 %A A261296 _Pieter Post_, Aug 14 2015 %E A261296 Added a(6) and more terms from _Chai Wah Wu_, Aug 17 2015