cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261308 a(n+1) = abs(a(n) - gcd(a(n), 8n+7)), a(1) = 1.

Original entry on oeis.org

1, 0, 23, 22, 21, 20, 15, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122
Offset: 1

Views

Author

M. F. Hasler, Aug 14 2015

Keywords

Comments

It is conjectured that for all n, a(n) = 0 implies that 8n+7 = a(n+1) is prime, cf. A186260. (This is the sequence {u(n)} mentioned there.)

Examples

			a(2) = a(1) - gcd(a(1),8+7) = 1 - 1 = 0.
a(3) = |a(2) - gcd(a(2),8*2+7)| = gcd(0,23) = 23 (= A186260(1)) is prime.
a(6) = 20 and 8*6+7 = 55, thus a(7) = 20 - gcd(20,55) = 20 - 5 = 15.
a(8) = 15 - gcd(15,8*7+7) = 15 - 3 = 12. Note that for n = 8 + a(8) = 20, we have that 8n+7 = 167 = a(20+1) = A186260(2) is prime, while for n = 3 + a(3) = 26, 8n+7 = 215 was divisible by 5, and for n = 7 + a(7) = 22, 8n+7 = 183 was divisible by 3.
		

Crossrefs

Programs

  • PARI
    print1(a=1);for(n=1,99,print1(",",a=abs(a-gcd(a,8*n+7))))