cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261328 Larger of pairs (m, n), such that the difference of their squares is a cube and the difference of their cubes is a square.

This page as a plain text file.
%I A261328 #23 Jan 08 2018 01:58:32
%S A261328 10,640,7290,8954,40960,52728,55566,70434,156250,405000,466560,536250,
%T A261328 573056,960089,997920,1176490,2037960,2621440,3374592,3556224,3748745,
%U A261328 4379424,4507776,5005000,5314410,6527466,6742450,7778106,8938800,10000000,10214145,12065355
%N A261328 Larger of pairs (m, n), such that the difference of their squares is a cube and the difference of their cubes is a square.
%C A261328 See A261296 for the smaller of the pairs and for additional comments.
%D A261328 H. E. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, New York, 1967, pp 56, 268, #177
%H A261328 Chai Wah Wu, <a href="/A261328/b261328.txt">Table of n, a(n) for n = 1..302</a>
%H A261328 Gianlino, in reply to Smci, <a href="https://answers.yahoo.com/question/index?qid=20110722023859AAsGZxn">Solution method for "integers with the difference between their cubes is a square, and v.v."</a>, Yahoo! answers, 2011
%e A261328 (6, 10) is a pair since 10^3 - 6^3 = 784 = 28^2, 10^2 - 6^2 = 64 = 4^3.
%o A261328 (PARI) is(n)=forstep(k=n-1,1,-1,issquare(n^3-k^3)&&ispower(n^2-k^2,3)&&return(k)) \\ _M. F. Hasler_, Aug 17 2015
%o A261328 (Python)
%o A261328 # generate sequences A261328 and A261296
%o A261328 from __future__ import division
%o A261328 from sympy import divisors
%o A261328 from gmpy2 import is_square
%o A261328 alist = []
%o A261328 for i in range(1,10000):
%o A261328     c = i**3
%o A261328     for d in divisors(c, generator=True):
%o A261328         d2 = c//d
%o A261328         if d >= d2:
%o A261328             m, r = divmod(d+d2,2)
%o A261328             if not r:
%o A261328                 n = m-d2
%o A261328                 if n > 0 and (m,n) not in alist and is_square(c*m+d2*n**2):
%o A261328                     alist.append((m,n))
%o A261328 A261328_list, A261296_list = zip(*sorted(alist)) # _Chai Wah Wu_, Aug 25 2015
%Y A261328 Cf. A000290, A000578, A001014, A261296.
%K A261328 nonn
%O A261328 1,1
%A A261328 _Pieter Post_, Aug 15 2015
%E A261328 Added a(6) and more terms added by _Chai Wah Wu_, Aug 17 2015