This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261328 #23 Jan 08 2018 01:58:32 %S A261328 10,640,7290,8954,40960,52728,55566,70434,156250,405000,466560,536250, %T A261328 573056,960089,997920,1176490,2037960,2621440,3374592,3556224,3748745, %U A261328 4379424,4507776,5005000,5314410,6527466,6742450,7778106,8938800,10000000,10214145,12065355 %N A261328 Larger of pairs (m, n), such that the difference of their squares is a cube and the difference of their cubes is a square. %C A261328 See A261296 for the smaller of the pairs and for additional comments. %D A261328 H. E. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, New York, 1967, pp 56, 268, #177 %H A261328 Chai Wah Wu, <a href="/A261328/b261328.txt">Table of n, a(n) for n = 1..302</a> %H A261328 Gianlino, in reply to Smci, <a href="https://answers.yahoo.com/question/index?qid=20110722023859AAsGZxn">Solution method for "integers with the difference between their cubes is a square, and v.v."</a>, Yahoo! answers, 2011 %e A261328 (6, 10) is a pair since 10^3 - 6^3 = 784 = 28^2, 10^2 - 6^2 = 64 = 4^3. %o A261328 (PARI) is(n)=forstep(k=n-1,1,-1,issquare(n^3-k^3)&&ispower(n^2-k^2,3)&&return(k)) \\ _M. F. Hasler_, Aug 17 2015 %o A261328 (Python) %o A261328 # generate sequences A261328 and A261296 %o A261328 from __future__ import division %o A261328 from sympy import divisors %o A261328 from gmpy2 import is_square %o A261328 alist = [] %o A261328 for i in range(1,10000): %o A261328 c = i**3 %o A261328 for d in divisors(c, generator=True): %o A261328 d2 = c//d %o A261328 if d >= d2: %o A261328 m, r = divmod(d+d2,2) %o A261328 if not r: %o A261328 n = m-d2 %o A261328 if n > 0 and (m,n) not in alist and is_square(c*m+d2*n**2): %o A261328 alist.append((m,n)) %o A261328 A261328_list, A261296_list = zip(*sorted(alist)) # _Chai Wah Wu_, Aug 25 2015 %Y A261328 Cf. A000290, A000578, A001014, A261296. %K A261328 nonn %O A261328 1,1 %A A261328 _Pieter Post_, Aug 15 2015 %E A261328 Added a(6) and more terms added by _Chai Wah Wu_, Aug 17 2015