A261330 Euler transform of Pell-Lucas numbers.
1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Eric Weisstein's World of Mathematics, Pell Number
- Wikipedia, Pell number
Programs
-
Mathematica
nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]
Formula
G.f.: Product_{k>=1} 1/(1-x^k)^(A002203(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = 0.40371233206538058741995064489690066306587648488344483...