A261337 Digit-sums in an incremental base that adjusts itself as the digits of n are generated from right to left.
0, 1, 1, 2, 1, 3, 2, 2, 1, 3, 3, 4, 2, 3, 2, 4, 1, 5, 3, 2, 3, 5, 4, 6, 2, 3, 3, 3, 2, 7, 4, 4, 1, 4, 5, 4, 3, 3, 2, 5, 3, 5, 5, 4, 4, 6, 6, 6, 2, 5, 3, 4, 3, 7, 3, 2, 2, 5, 7, 8, 4, 5, 4, 6, 1, 5, 4, 6, 5, 7, 4, 6, 3, 3, 3, 5, 2, 7, 5, 3, 3, 6, 5, 8, 5, 7, 4
Offset: 0
Examples
n = 11 base = 2 11 mod base = 11 mod 2 = 1 int(11/2) = 5 base + 1 = 3 5 mod base = 5 mod 3 = 2 int(5/3) = 1. base + 2 = 5 1 mod base = 1 mod 5 = 1 int(1/5) = 0 Therefore incbase(11) = 121 and digsum(11,incbase) = 4. n = 23 base = 2 23 mod base = 23 mod 2 = 1 int(23/2) = 11 base + 1 = 3 11 mod base = 11 mod 3 = 2 int(11/3) = 3. base + 2 = 5 3 mod base = 3 mod 5 = 3 int(3/5) = 0 Therefore incbase(23) = 321 and digsum(23,incbase) = 6.
Links
- Anthony Sand, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A108731.
Programs
-
PARI
n=0; nmx=1000; d=vector(20); bs=vector(20); while(n < nmx, n++; b=2; nn=n; di=0; while(nn>0, di++; d[di] = nn % b; nn \= b; b += d[di]; ); s = sum(i=1,di,d[i]); print1(s,", "); );
Comments