cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261340 Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.

This page as a plain text file.
%I A261340 #24 Sep 08 2019 07:21:21
%S A261340 3,5,5,1,8,1,7,4,2,3,1,4,3,7,7,3,9,2,8,8,2,2,4,4,4,7,3,6,4,7,6,3,2,6,
%T A261340 3,6,7,0,8,7,4,6,9,5,4,1,7,5,3,2,2,1,3,4,2,3,8,1,2,9,4,9,9,7,1,2,8,0,
%U A261340 0,1,8,0,5,7,5,5,5,7,8,2,8,8,6,7,9,8,1,3,8,1,0,8,2,4,1,6,7
%N A261340 Decimal expansion of the radius of convergence of the generating function of A000598, the number of rooted ternary trees of n vertices.
%D A261340 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 298.
%H A261340 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; p. 478.
%e A261340 0.35518174231437739288224447364763263670874695417532...
%t A261340 digits = 97; m = 2 digits + 10; For[gf = 0; i = 0, i <= m, i++, gf = Series[1 + x*(gf^3/6 + (gf /. x -> x^2)*gf/2 + (gf /. x -> x^3)/3), {x, 0, m + 1}] // Normal];
%t A261340 g[r_] := Module[{r2, r3, X, ym}, r2 = gf /. x -> r^2; r3 = gf /. x -> r^3; X[y_] = (y - 1)/(y^3/6 + r2*y/2 + r3/3); ym = y /. FindRoot[X'[y] == 0, {y, 2}, WorkingPrecision -> digits + 5]; X[ym]]; rho = FixedPoint[g, 1/3, SameTest -> (Abs[#1 - #2] < 10^-digits &)]; RealDigits[rho, 10, digits] // First
%Y A261340 Cf. A000598, A000642, A002094, A121331, A244399.
%K A261340 nonn,cons
%O A261340 0,1
%A A261340 _Jean-François Alcover_, Aug 15 2015
%E A261340 More digits from _Vaclav Kotesovec_, Aug 15 2015
%E A261340 More digits and Mma code updated by _Jean-François Alcover_, Apr 18 2016