This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261347 #38 Jan 07 2020 11:47:38 %S A261347 0,0,5,26,84,222,488,946,1664,2723,4227,6277,8993,12514,16976,22538, %T A261347 29364,37649,47563,59321,73149,89254,107892,129308,153764,181547, %U A261347 212931,248223,287747,331780 %N A261347 Maximum water retention of a number square of order n. %C A261347 A number square is an arrangement of numbers from 1 to n*n in an n X n matrix with each number used only once. %C A261347 The number square was used in 2009 as a stepping stone in solving the problem of finding the maximum water retention for magic squares. %C A261347 In June 2009, _Walter Trump_ wrote a program that calculates the maximum water retention in number squares up to 250 X 250. %C A261347 The retention patterns for orders 3, 4, 8 and 11 show perfect symmetry. %C A261347 For orders 5, 7, 30 and 58, more than one pattern gives maximum retention. (For order 7, there are 3 patterns that give maximum retention.) %H A261347 Craig Knecht, <a href="/A261347/a261347_1.jpg">Maximum retention 5 X 5 number square.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_2.jpg">Maximum retention 6 X 6 number square.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_5.jpg">Maximum retention 7 X 7 number square.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_4.jpg">Maximum retention 8 X 8 number square.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347.jpg">Maximum retention 9 X 9 number square.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_6.jpg">Order 7 - three patterns for maximum retention.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_7.jpg">Order 30 - two patterns for maximum retention.</a> %H A261347 Craig Knecht, <a href="/A261347/a261347_8.jpg">Pattern comparison table.</a> %H A261347 Wikipedia, <a href="http://en.wikipedia.org/wiki/Water_retention_on_mathematical_surfaces">Water retention on mathematical surfaces</a> %H A261347 Wikipedia, <a href="https://en.wikipedia.org/wiki/File:Prime_number_surface_.svg">Retention with prime numbers</a>. %e A261347 (2 6 3) %e A261347 (7 1 8) %e A261347 (4 9 5) %e A261347 The values 6,7,8,9 form the dam with the value 6 being the spillway. 5 units of water are retained above the central cell. The boundaries of the system are open and allow water to flow out. %Y A261347 Cf. A201126 (water retention on magic squares), A201127 (water retention on semi-magic squares). %K A261347 nonn %O A261347 1,3 %A A261347 _Craig Knecht_, Aug 15 2015