cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261348 a(1)=0; a(2)=0; for n>2: a(n) = A237591(n,2) = A237593(n,2).

This page as a plain text file.
%I A261348 #27 Dec 31 2020 11:11:15
%S A261348 0,0,1,1,2,1,2,2,2,2,3,2,3,3,3,3,4,3,4,4,4,4,5,4,5,5,5,5,6,5,6,6,6,6,
%T A261348 7,6,7,7,7,7,8,7,8,8,8,8,9,8,9,9,9,9,10,9,10,10,10,10,11,10,11,11,11,
%U A261348 11,12,11,12,12,12,12,13,12,13,13,13,13,14,13,14,14,14,14,15,14,15,15,15,15,16,15,16,16,16,16,17,16
%N A261348 a(1)=0; a(2)=0; for n>2: a(n) = A237591(n,2) = A237593(n,2).
%C A261348 n is an odd prime if and only if a(n) = 1 + a(n-1) and A237591(n,k) = A237591(n-1,k) for the values of k distinct of 2.
%C A261348 For k > 1 there are five numbers k in the sequence.
%C A261348 For more information see A237593.
%e A261348 Apart from the initial two zeros the sequence can be written as an array T(j,k) with 6 columns, where row j is [j, j, j+1, j, j+1, j+1], as shown below:
%e A261348 1,   1,  2,  1,  2,  2;
%e A261348 2,   2,  3,  2,  3,  3;
%e A261348 3,   3,  4,  3,  4,  4;
%e A261348 4,   4,  5,  4,  5,  5;
%e A261348 5,   5,  6,  5,  6,  6;
%e A261348 6,   6,  7,  6,  7,  7;
%e A261348 7,   7,  8,  7,  8,  8;
%e A261348 8,   8,  9,  8,  9,  9;
%e A261348 9,   9, 10,  9, 10, 10;
%e A261348 10, 10, 11, 10, 11, 11;
%e A261348 11, 11, 12, 11, 12, 12;
%e A261348 12, 12, 13, 12, 13, 13;
%e A261348 13, 13, 14, 13, 14, 14;
%e A261348 14, 14, 15, 14, 15, 15;
%e A261348 15, 15, 16, 15, 16, 16;
%e A261348 ...
%e A261348 Illustration of initial terms:
%e A261348 Row                                                     _
%e A261348 1                                                     _| |0
%e A261348 2                                                   _|  _|0
%e A261348 3                                                 _|   |1|
%e A261348 4                                               _|    _|1|
%e A261348 5                                             _|     |2 _|
%e A261348 6                                           _|      _|1| |
%e A261348 7                                         _|       |2  | |
%e A261348 8                                       _|        _|2 _| |
%e A261348 9                                     _|         |2  |  _|
%e A261348 10                                  _|          _|2  | | |
%e A261348 11                                _|           |3   _| | |
%e A261348 12                              _|            _|2  |   | |
%e A261348 13                            _|             |3    |  _| |
%e A261348 14                          _|              _|3   _| |  _|
%e A261348 15                        _|               |3    |   | | |
%e A261348 16                      _|                _|3    |   | | |
%e A261348 17                    _|                 |4     _|  _| | |
%e A261348 18                  _|                  _|3    |   |   | |
%e A261348 19                _|                   |4      |   |  _| |
%e A261348 20              _|                    _|4     _|   | |  _|
%e A261348 21            _|                     |4      |    _| | | |
%e A261348 22          _|                      _|4      |   |   | | |
%e A261348 23        _|                       |5       _|   |   | | |
%e A261348 24      _|                        _|4      |     |  _| | |
%e A261348 25    _|                         |5        |    _| |   | |
%e A261348 26   |                           |5        |   |   |   | |
%e A261348 ...
%e A261348 The figure represents the triangle A237591 in which the numbers of horizontal cells in the second geometric region gives this sequence, for n > 2.
%e A261348 Note that this is also the second geometric region in the front view of the stepped pyramid described in A245092. For more information see also A237593.
%Y A261348 Cf. A000040, A236104, A235791, A237048, A237591, A237593, A261350, A261699.
%K A261348 nonn,tabf,easy
%O A261348 1,5
%A A261348 _Omar E. Pol_, Aug 24 2015